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Abstract 
This paper analyzes the force vs depth loading curves of conical, pyramidal, 
wedged and for spherical indentations on a strict mathematical basis by ex-
plicit use of the indenter geometries rather than on still world-wide used ite-
rated “contact depths” with elastic theory and violation of the energy law. The 
now correctly analyzed loading curves provide as yet undetectable phase- 
transition. For the spherical indentations, this includes an obvious correction 
for the varying depth/radius ratio, which had previously been disregarded. 
Only algebraic formulas are now used for the calculation of material’s prop-
erties without data-fittings, or simplifications, or false simulations. Penetra-
tion resistance differences of materials’ polymorphs provide precise intersec-
tion values as kink unsteadiness by equalization of linear regression lines from 
mathematically linearized loading curves. These intersections indicate phase 
transition onset values for depth and force. The precise and correct determi-
nation of phase-transition onsets allows for energy and phase-transition energy 
calculations. The unprecedented algebraic equations are most simply and 
mathematically reproducibly deduced. There are no restrictions for elastic 
and/or plastic behavior and no use of different formulas for different force 
ranges. The novel indentation formulas reveal unprecedented access to the 
onset, energy and transition energy of phase-transitions. This is now also 
achieved for spherical indentations. Their formula as deduced for plotting is 
reformulated for integrations. The distinction of applied work (Wapplied) and 
indentation work (Windent) allows now for comparing spherical with pyra-
midal indentation phase-transitions. Only low energy phase-transitions from 
pyramidal indentation may be missed in spherical indentations. The rather 
low penetration depths of sphere calottes calculate very close for cap and flat 
area values. This allows for the calculation of the indentation phase-transition 
onset pressure and thus the successful comparison with hydrostatic anvil pres-
surizing results. This is very helpful for their interpretations, as low energy 
phase-transitions are often missed under the anvil, and it further strengthens 
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the unparalleled ease of the indentation techniques. Exemplification is re-
ported for pyramidal, spherical, and hydrostatic anvil stressing by the nu-
merical analysis of published germanium data. The previous widely accepted 
historical indentation theories and standards are challenged. Falsely simu-
lated and even published so-called “experimental” indentation data from the 
literature can most easily be checked. They are mathematically unsound and 
their correction is urgently necessary for scientific reasons and daily safety 
with stressed materials. The motivation for this paper is the challenge of 
worldwide incorrect ISO 14577 standards for false and incomplete characte-
rization of materials. The minimization of catastrophic failures e.g. in avia-
tion requires the strengthening and the advancements of the mathematical 
truth by using our closed formulas that are based on undeniable geometric 
and algebraic calculation rules. 
 
Keywords 
Geometry of Indenters, Algebraic Solutions, False Mathematic Concepts, 
Germanium, Pyramidal Conical Indentation, Spherical Indentation 

 

1. Introduction 

Normal indentations onto flat surfaces are a long-term mathematical problem 
initially posed by Boussinesq in 1882 [1]. The load/depth relation had always 
been tried to be solved by starting with elasticity theory. Young’s modulus E 
(that is unfit for indentations) and Poisson’s ratio ν unduly described the mate-
rials by indentations with the total applied force for an (since 1992 iterated) in-
dentation area. The highly cited work of Hertz [2] in 1882 described only the 
mathematical touching between balls (with radius R) and the one of balls with 
flat surfaces, but without penetration. He deduced a contact pressure p = kα3/2 
where α describes the impact area. He repeated that he did not describe penetra-
tion in [3], but all followers who refined this approach kept with a force P per 
indentation area a (circle of contact) when the half-sphere penetrated at in-
creasing force. They had to deal with an additional parameter the indentation 
depth h and kept with the exponent 3/2 on the penetration depth (h3/2). Much 
effort was put to the refinement in the early 1900ies, but advancements became 
over complicated, and also conical indentation had to be mathematically described. 
Really useful equations for practical use had to wait until 1939, when Love in [4] 
very laboriously deduced formulas for rigid cones. His approach was again “elas-
tic theory” and force per area and his solution is ( )2 2tg 2 1P h Eα ν= π −  (be-
low we replace P by FN for normal force and do not violate the energy law). Thus, 
the depth was squared for cones and pyramids in [4]. Only the proportionality 
factor was changed in 1965 with the very laborious deduction of Sneddon in [5] 
to read ( )2 22 cot 1P h E α ν= ⋅ π −  that has been widely accepted. He also de-
duced a “solution” for spherical indentation by using Hankel transforms and the 
theory of dual integral equations. His formula (6.15) for spheres is  
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( ) ( ){ }1 2 21 2P E a R h a aRν −= − + − , where ( )22 2a R R h= − − . It at least shows 
that the situation is much more difficult than “Hertzian theory”. When the substi-
tution is made one obtains an equation ( ) ( ) ( )

1 21 2 3 21 2 5 2P E Rh h R h hν
−−= − − −  

with a multitude of terms and with numerous different exponents on h. Only 
this part of Sneddon’s work was ignored. 20 years later Johnson came back in [6] 
with a formula by “summarizing Hertzian theory” to read * 1 2 3 24 3P E R h=  
(where E* is reduced elastic modulus) for the sphere. This again did not consider 
the particular geometry of the sphere calotte. Interestingly, Oliver and Pharr 
cited in [7] the reference [5] but formulated “P = αhm for spheres “with m = 1.5”, 
arguing that the sphere can be described as a solid of revolution giving “a smooth 
function”. But they did not tell that this was Johnson’s “summarized” formula in 
[6]. Unfortunately, the geometrically unsound formulas in [7] and in [6] became 
ISO-ASTM standard (International Standardization Organization-American So-
ciety for Testing of Materials) that is still generally enforced. For example, the 
authors of [8] calculated modulus values E from the elastic contact with spheri-
cal indentation “according to the classical Hertzian theory” with Johnson’s for-
mula in [6] (“below the yield point”). It did not help that the experimental load-
ing curves were at variance with these formulas. The exponents were just be-
lieved but not checked. Such checking was at least possible since 2004 as shown 
in [9] and thereafter with the FN vs h3/2 plot from the present author’s group. 
This plot (later from believers disdainfully termed as “Kaupp-plot”) disproved 
and disproves the more than 1000-fold falsely claimed exponent “2” on h (as 
enforced by ISO) for all conical, pyramidal and wedged indentations. It also dis-
closes whether published spherical indents were truly spherical. However, sever-
al researchers continued to simulate spherical indentations as one exponent pa-
rabola with h3/2 according to Johnson’s formula in [6] and claimed that their 
“experimental curves” would support such claims. Fortunately, such published 
“results” of “spherical indentations” have been and can be disproved by expo-
nent check with the FN vs h3/2 plot (we now also call it “Kaupp-plot”), which, of 
course, cannot give straight lines neither for the simulation and nor for the pub-
lished so called “experimental” curves. Such publications are disastrous and some 
examples for such clearly manipulated data are published in [10] [11]. We re-
frain from listing further examples; they are easily checked in the literature. The 
here cited disclosures and our papers with mathematical deductions on the basis 
of undeniable closed mathematical equations for indentations have not yet occa-
sioned ISO-ASTM to thoroughly revise their incorrect ISO 14577 standards, falsely 
enforcing the producing industries via the certification agencies. We therefore ex-
tend our mathematical deductions for conical, pyramidal, wedged and spherical 
indentations and report various unprecedented application. This also allows for 
comparison of unchanged spherical indentations with hydrostatic techniques.  

2. The Geometrical Deductions of Indentation Formulas  
Excluding Iterations 

All mathematical deductions in the Introduction started with the indented sur-
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face area, and by applying the elasticity theory. They ran into enormous mathe-
matical problems that could for a long time not be solved since 1882 with prac-
tically useable formulas. Only the still incorrect formulas of Love in [4] or one of 
them from Sneddon in [5] and of Johnson in [6] were used by Oliver-Pharr [7] 
in 1992 by using standard materials that they characterized by two iterations 
with 3 followed by 8 free parameters. These iterations were taken up by ISO and 
refined as ISO 14577 standards for performing and analyzing indentations. 
These physically unsound but binding standards had not been challenged before 
2004 [9] when the present author’s group started to empirically prove with the 
Kaupp-plot that such standards did experimentally not concur. It was undenia-
bly deduced in 2013 [12] that the standards violated the energy law because not 
all applied force and energy is used for the volume formation. Finally, the ma-
thematical foundation of the FN vs h3/2 parabola for cones was geometrically de-
duced in 2016 using basic algebra in [13]. The projected or iterated contact area 
related formulas are thus finally disproved for conical, pyramidal and wedged 
indentations. Rather the volume of the indenter has to be used and everything is 
very simple. Previous thinking is thus obsolete. We must now comprehensibly 
repeat the geometrical deduction despite their simplicity, as the incorrect ISO 
14577 standards are still used by teachers, and enforced to certification agencies, 
and thus also for the producing industries.  

2.1. The Energetics and the Correct Exponent of Conical  
Indentations 

The normal force vs depth curves are empirically described since 2004 in [9] and 
also theoretically since 2016 in [13] as parabolas with exponent 3/2 on the depth 
as Formula (1). FN is the normal force (we do not use “P” as in the formulas of 
the Introduction), h (µm) is the depth, and k (mN/µm3/2) is the material’s pene-
tration resistance. The indentation work Windent (mNµm) in Formula (2) is ob-
tained by integration. The constantly increased normal force from zero to the 
same force gives the applied work Wapplied (mNµm) in Formula (3). For the 
maximal force FNmax we substitute FN of Formula (1) in Formula (3) and obtain 
the Wapplied/Windent ratio of 5/4, which is universally valid for all materials upon 
conical, pyramidal and wedged indentations. Clearly 20% of Wapplied (and thus FN) 
is not used for the penetration with a cone, pyramid or wedge. The non-consi- 
deration is the already mentioned violation of the energy law that led to a false 
exponent on h, which is still enforced by ISO, but urgent subject to change. This 
is the reason why we use FN and not “P” for the normal force. 

3 2
NF kh=                                 (1) 

5 20.4indentW kh=                              (2) 

0.5applied NW F h=                              (3) 

The geometric deduction of the correct exponent (3/2 but not 2) in [13] has to 
consider that the penetration of the cone under force is a coupled process of vo-
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lume- and pressure-formation. In practice there is not always only elastic pres-
sure but there are mostly all kinds of plastic deformations. We thus sum up all of 
it to “total pressure”. It creates the 20% loss of force and energy for the volume 
formation with its depth. One has to multiply the force for volume formation FNv 
with the force for total pressure formation FNp in Equation (4). Now one consid-
ers that the total pressure must be proportional to the immersed volume of the 
cone in Equation (5), so that FNp is proportional to h3 and h proportional to 

1 3
NpF . When the exponent n is 1/3 the exponent m must be 2/3 and Equation (4) 

becomes Equation (6). As 1 3
NpF  is lost for the indentation only 2 3

NvF  is propor-
tional to the depth in Equation (7). The deduction is completed with inclusion of 
the materials property factor, which is the penetration resistance or the physical 
hardness kv or k = 1.25kv (mN/µm3/2) as the proportional constant to give Equa-
tion (8v) and by its multiplication of both sides with the Wapplied/Windent ratio = 
1.25 that is herewith also deduced. Equation (8v) is used when only the volume 
formation must be considered as e.g. in Section 5. Equation (1) thus describes 
the whole indentation.  

m n
N Nv NpF F F=                               (4) 

3 2tan 3coneV h α= π                           (5) 

2 3 1 3
N Nv NpF F F=                              (6) 

2 3  NvF h∝  or 2 3
NvF h∝                          (7) 

3 2
Nv vF k h=                              (8v) 

Equation (1) is generally valid for all materials with respect to the used cone 
angle and for pyramids and wedges with their effective cone angles (e.g. α = 
70.3˚ for the most used Berkovich pyramid). Normalization of these with tanα2 
is possible when different indenter geometries among these must be compared. 
The kv value of Equation (8v) is the physical hardness with respect to the force 
FNv that is responsible for the volume formation. The technically more important 
k = 1.25kv value of Equation (1) is the physical hardness for the whole indenta-
tion force with FN = 1.25FNv. We thus distinguish two different physical hardness 
values. This has to be taken into account for the comparison of e.g. pyramidal 
indentations with spherical ones with different Wapplied/Windent = FN/FNv ratios. 
Unlike iterations for false “ISO-hardness” we obtain from the correct analysis of 
Equation (1) by plotting FN vs h3/2 (the “Kaupp-plot”) linear regression lines via 
Excel(R) calculation and detect the phase-transition onsets at the kink unsteadi-
ness of intersecting regression lines, because different polymorphs exhibit dif-
ferent k-values. The calculated intersection point by equalization of the regres-
sion lines at FNkink and 3 2

kinkh  reveals also the practically important indentation 
energies [cf Equation (2) and Equation (3)]. Furthermore, the phase-transition 
energy can be calculated by using the Equation (9) through (13). The application 
Equation (9) and Equation (11) contain the corrections for axis-cut Fa when not 
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zero. All of these have been deduced and are repeated here in modified form [14] 
[15] for direct comparison with the spherical situation in Section 2.2. 

( )1 10.5applied kink Nkink aW h F F= +                     (9) 

1 10.8indent appliedW W=                        (10) 

( ) ( )5 2 5 2
2 2 20.4indent kink a kinkW h h F h h= − + −               (11) 

   2 2full 0.5applied NW F h=                       (12) 

    fulltransition applied appliedW W W= − Σ                   (13) 

The fast calculation of Wapplied1 for cones, pyramids and wedges with Equation 
(10) avoids the integration of Equation (1). Higher phase-transition Windents must 
be integrated from kink to the next kink etc. The FN2-h2 pair can be freely chosen 
above the kink1. In the case of several phase-transitions one proceeds from kink 
to further kink and after the last phase-transition there is free choice for the 
FNn-hn pair. A practical example will be calculated in Section 3. 

2.2. The Correct Loading Curve and the Energetics of Spherical  
Indentations 

A one member “parabola with exponent 3/2” for spheres in [6], [7] and ISO is 
impossible, because such parabola with exponent 3/2 is only valid for cones, py-
ramids and wedges. The geometric deduction of the correct FN vs h curve of 
sphere calottes (with sphere radius R and calotte radius r) is more involved, be-
cause the depth related R/h ratio is changing during the penetration as shown in 
[10]. As in the conical case one starts again with Equation (4) to distinguish 
pressure and volume. The sphere-calotte volume formula is ( )2 3V h R h= π − . 
It is modified by multiplication with 1= h/h to give the more easily handled Eq-
uation (14) that is more similar to Equation (5) containing h3 but with the vary-
ing dimensionless R/h term for its ( )1 3R hπ −  correction. This correction 
term can be treated like a variable factor that has to be separately applied for 
every force point of the plot, according to Equation (18) that is not at all a 
one-member parabola. The sequence of the deduction is now similar to the one 
for cones. We consider again that the total pressure must be proportional to the 
immersed volume of Equation (14) and get the Formulas (15) for FN, (16) for 

1 3
NpF  and (17) for 2 3

NvF . Equation (18v) is obtained for FNv after multiplication 
with the material’s proportionality factor ksv (s for sphere; v for volume). Equa-
tion (18v) describes only the volume formation and it is used when the penetra-
tion part FNv must be exclusively considered. Equation (18) for the whole inden-
tation is obtained by multiplication of both FNv and kv with the Wapplied/Windent ra-
tio. Equation (18) is used for plotting FN vs ( ){ }3 2 1 3h R hπ − . One obtains the 
penetration resistance values ks1 and ks2 (mN/µm3/2), the phase-transition onset 
with FNkink, the ( ){ }3 2 1 3h R hπ −  value, and the Wapplied1 at the kink position 
from the intersection of the regression lines. The necessary hkink must not be 
calculated. It is available from the FN-h for FN = FNkink curve. For the now neces-
sary calculation of Windent we reformulate Equation (18) and add the axis cut Fa 
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(+, 0, or −) to give Equation (19). Its integration gives Equation (20) for Windent. 
The Wapplied2 is calculated from FNkink to FN2 (here chosen at FNmax). The balance of 
full Wapplied − ΣWapplied is the phase-transition energy Wtransition as in Equation (13). 
A practical example will be calculated in Section 4. Equation (18v) will be used in 
Sections 4, 5, and 6.  

   ( )3 1 3V h R h= π −                         (14)  

    ( )3 1 3NF h R h∝ π −                        (15)  

   ( ) 1 31 3 1 3 1 3NpF h R h ∝ π −                      (16)  

   ( ) 2 32 3 2 3 1 3NvF h R h ∝ π −                      (17)  

   ( )3 2 1 3Nv svF k h R h= π −                      (18v) 

   ( )3 2 1 3N sF k h R h= π −                       (18) 

    1 2 3 2 3N s s aF k Rh k h F= π − π +                     (19) 

  3 2 5 2d 2 3 2 15indent Nkink s sW F h k Rh k h Fh= = ⋅ π − ⋅ π + ∆∫          (20) 

3. The Pyramidal Indentation Calculation of Germanium  

For the numerical exemplification, the published data of the semiconductor 
germanium are chosen from the literature. This covers pyramidal (Berkovich 
diamond), spherical (diamond) indentations, and hydrostatic anvil compression. 
The analysis of the Berkovich indentation onto cubic germanium from [16] ac-
cording to Equation (1) is depicted in Figure 1 with the inserted regression line  
 

 
Figure 1. Normal force vs depth3/2 plot upon indentation onto germanium with inserted 
regression line equations; the vertical line cuts off the initial surface effect; FNkink is at 
4.149 mN; the original data from the FN vs h curve are taken from Figure 5(a) in [16], but 
only up to 0.3 µm depth (at 15.25 mN) before the numerous load-unload sequences that 
detract from the smoothness of the further force-depth curve.  
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equations after a short initial surface effect (including the inevitable tip round-
ing). The proportionality of Windent = 0.8Wapplied (Equation (2) and Equation (3)) 
for a loading parabola with exponent 3/2 in [12] makes it particularly easy to 
calculate Windent for every chosen work so that normalization per force unit pro-
vides comparable values for different materials. The phase-transition kink posi-
tion by equalization of the regression lines is at 4.149 mN and 0.151 µm. The 
pristine polymorph withstands a phase-transition up to 0.1342 mNµm applied 
work and Windent1 is thus 0.1074 mNµm. With Wapplied2 = 1.7927 and full Wapplied = 
2.3059 mNµm the phase transition energy into the second polymorph calculates 
easily as full Wapplied − ΣWapplied (Equation (13)) to give Wtransition = 0.37898 mNµm 
from kink to 15.25 mN load. These are after normalization per mN 0.03414 
mNµm/mN. Such transition energies based on physically valid application of 
geometry and arithmetic calculation rules are not available by any other means. 
Unfortunately, we could not search for further phase-transitions of germanium, 
due the smoothness lack by the repeated load-unload sequences at higher loads 
in [16].   

4. The Spherical Indentation Calculation of Germanium  

The spherical indentation onto germanium at a rate of 7 mN/s follows Equation 
(18) and Equation (19), but not Johnson’s equation of a one exponent FN-h3/2 
parabola for spheres in [6]. The publication of [17] depicts in its Figure 1(a) the 
loading curve of crystalline germanium onto (100) from a sphere with radius R ≈ 
4.2 µm. This was certainly a good sphere at least up to 4 µm depth. The so-called 
“pop-ins” of the FN vs h curve far away from the phase-transition position are 
not corrected for, because there is no force hold interruptions and there are no 
“discontinuities” in the FN vs h curve of [17]. Our trial Kaupp-plot in Figure 2 
does not result in a straight line as it should if the “Hertzian analysis” of [17] 
would be correct.  

Only our physically correct two-exponent parabola plot for spherical indenta-
tions in Figure 3 gives after the initial surface effect two straight lines with a 
sharp kink, indicating a phase-transition, even though a phase transition was 
“excluded” by [17] with Raman spectroscopy after unloading. Only a “pinning of 
slip bands” and or “multiple discontinuities” by “plastic deformation” were sus-
pected. In Figure 3 we plot the normal force FN vs ( ){ }3 2 1 3h R hπ −  for ger-
manium, according to Equation (18). It visualizes the linearity for obtaining the 
penetration resistance values k (mN/µm3/2) with respect to the spherical tip with 
radius 4.2 µm. The phase-transition onset is clearly seen by the kink and the very 
different k-values of the polymorphs. The regression line results are inserted. 
The slightly steeper data above the horizontal shut-off line are not included in 
the regression.  

We do not dare to claim a “second kink” at about 46 mN load due to the short 
penetration length, but did not include the data pairs above 46 mN load in the 
regression. There is also a risk of spheres’ quality at higher depths. The 4.2 µm  
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Figure 2. Normal force vs depth3/2 trial-plot of the spherical (R = 4.2 µm) indentation 
onto germanium, disproving the so-called “Hertzian theory” of Johnson [6] that has been 
claiming a one-exponent h3/2 parabola as that would require to proceed linearly in that 
plot; the loading data were taken from [17].  
 

 
Figure 3. Normal force vs point by point corrected depth3/2 plot of germanium upon 
spherical indentation (R = 4.2 µm) onto germanium with the inserted regression line eq-
uations; the initial surface effect data and the data above the horizontal line are not part of 
the regressions; the phase-transition onset is at 10.703 mN; the loading data were taken 
from [17]. 
 
diamond sphere was however in good shape, at least up to about 0.4 µm depths. 
The inserted regression lines give the materials’ dependent penetration resis-
tance values ks (mN/m3/2) of the respective polymorphs, because the uninterrup-
tedly varying geometric factor is taken care of by the R/h ratios in Equation (18). 
The equalization of the (not drawn) regression lines provides the sharp phase 
transition onset at the kink position at ( ){ }3 25.197 1 3h R hπ −  µm3/2. One ob-
tains FNkink = 10.703 mN by insertion in any one of the two regression line equa-
tions. With the FNkink value one obtains hkink= 0.124 µm from the FN vs h loading 
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curve and according to Equation (9) also Wapplied1 = 0.67704 mNµm. The inte-
grated Equation (20) provides Windent1 = 0.4756 mNµm.  

The Windent/Wapplied ratio is here not 0.8 as in the case of conical, pyramidal, 
and wedged indentations (cf Section 3). It changes for every point at spherical 
indentations as in Figure 3. We need the integrated Formula (20) for the trans-
formed polymorph of germanium. It can be calculated for any force with its 
depth above the kink value for the calculation of Windent2 and Wapplied2. In the ab-
sence of a second kink within the loading range we integrated from FNkink to 
FNmax at linearly interpolated 50 mN and the interpolated depth of hmax = 0.4444 
µm. Equation (20) provides Windent2 = 7.07438 mNµm for the sphere with radius 
4.2 µm. Equation (9) is correspondingly used for (50 − FNkink1) and (hmax − hkink) 
to give Wapplied2 = 8.8219 mNµm up to 50 mN load for the sphere of radius 4.2 
µm. The sum (Wapplied1 + Wapplied2) is 9.4989. As the full applied work (Equation 
(12)) from 0 to FNmax and hmax is 11.1111 mNµm one obtains the endothermic 
balance as full Wapplied – ΣWapplied = Wtransition = 1.6122 mNµm, according to Equa-
tion (13) for the phase transition energy of germanium at the kink onset position 
for the whole indentation force.  

It should be noted that the energy calculations for spheres are with respect to 
the R/h value at the kink position. The non-constancy of the correction factor in 
Equation (18) prevents a normalization of the energy values per mN. Every 
energy value must be separately calculated when compared with the values from 
conical, pyramidal, or wedged indenters. Only for the latter is it possible to in-
terpolate and even interconvert energy values via (effective) cone half angle. This 
disadvantage of spherical indentations is outweighed by the pressure distribu-
tion over an almost plane area. The sphere calotte radius for R = 4.2 µm and h = 
0.124 µm is easily calculated with ( )sin R h Rβ = −  and cos r Rβ = , to give r 
= 1.01327 µm. Thus, the flat πr2 area is here 3.226 µm2, which is similar to the 
calotte-cap 2πRh surface area of 3.272 µm2. For the pressure calculation we need 
the force part for the penetration of Equation (18v), in accordance with the 
energy law. At the phase transition onset position, the Windent1/Wapplied1 ratio is 
0.4756/0.67704 = 0.70247. Therefore, also FNindent1/FNapplied1 = 0.70247. When this 
factor is multiplied with the whole force of 10.703 mN one obtains the force at 
the phase-transformation onset that is only responsible for the penetration and 
calculates to 7.5185 mN. The penetration force/area is thus 2.331 or 2.298 
mN/µm2 (which is better known as GPa). We do not decide which of the two 
surfaces give the better value, but upon rounding both read 2.3 GPa. The almost 
perfect correspondence of this pressure value with much more difficultly ob-
tained hydrostatic anvil pressurization results is discussed in Section 6. 

5. Comparison of the Pyramidal and Spherical Indentations  
onto Germanium 

It is certainly more precise to indent with diamond indenters like for example 
with Berkovich indenter, the smooth diamond faces of which are everywhere 
uniform. Its inevitable tip rounding ends at the very low ( )1 sin 70.3coneh R= −  
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and it is mostly hidden within the diverse surface effects that are abandoned. 
Conversely, ideal spherical diamond tips require more expertise at their produc-
tion and control of a constant radius for a certain guarantied height. Such radii 
are not very precisely known and hardly reproducible. The next difference is the 
penetration mathematics that is very easy for cones, pyramids, and wedges, but 
more complicated for spheres. These questions could be answered now with the 
Equation (18) and Equation (19). Different are the penetration depths with py-
ramids and spheres. The kink values of the phase-transitions for Berkovich are 
4.149 mN at 0.151 ∙ 0.8 µm (Equation (8v)) and for the sphere 10.703 mN at 
0.124 ∙ 0.70247 µm [Equation (18v), we must here use the penetration force]. The 
corresponding Windent1 values are at 0.10736 mN and 0.4756 µm for Berkovich 
and sphere, respectively. Also, the comparison of the corresponding phase-transi- 
tion energies of 0.2487 and 1.6217 mNµm shows that we cannot claim without 
further data that these phase-transitions did produce the same polymorph. The 
Berkovich should have reached a much deeper penetration depth than the sphere 
and the values of Windent and Wtransition better comparable. It might be twinning of 
germanium as had been suggested in [16] for the Berkovich. Unfortunately, we 
could not analyze the smoothness-lacking multi load-unload curves of [16] up to 
40 mN so that we probably missed the force for the more demanding phase-tran- 
sition, as it was reached for the sphere. Furthermore, the lower force for twin-
ning at low depths of the sphere, could have been lost due to zero-point prob-
lems at the start and extremely large R/h values of Equation (18) at very low 
force. This is a disadvantage of spherical indentations. Low energy phase-transi- 
tions must be detected with pyramidal indentations. On the other hand, high 
energy phase-transitions are easier with ideal spheres at lower depths. We de-
tected here two phase-transitions with different transition energies for germa-
nium, the further characterization of these requires X-ray diffraction or more 
advanced spectroscopic techniques.  

6. Comparison of the Spherical Indentation with Results  
from Anvil Pressurizing of Germanium  

An important advantage of the sphere calotte geometry is its flat πr2 area value 
that is very similar to the one of the 2πRh cap area at low depth (here 3.226 and 
3.272 µm2, respectively). One calculates reliable force over area pressure values 
(mN/µm2, better known as GPa). These do not contain the errors of extensive 
simulations for ISO hardness for indentations in [7] by assuming pristine stan-
dards by denying the phase-transitions that had occurred at their loads, not to 
speak of the numerous further technical errors as revealed and listed in [18]. The 
present spherical onset force at FNkink = 10.703 × 0.70247 mN gives 2.321 or 2.298 
mN/µm2 (GPa) transition pressure when divided by the penetration area at the 
phase-transition onset (Section 4). This pressure value is smaller than those of 
the most cited anvil experiments that require about 8 to 11 GPa, depending on 
the hydrostatic purity of the pressure transfer in [19]. That seems to exclude in 
the present spherical case a transformation of Ge-I (cubic, diamond, Fd3m) into 
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non-quenchable Ge-II {(tetragonal, space group I 4(1)/amd, ß-tin)}. But one has 
to consider that Ge-III (body centered tetragonal) is formed from Ge-II in the 
anvil case upon pressure release from 12 - 14 GPa down to 7.6 GPa and lower, 
where it thermally reverts to Ge-I and Ge-III. Very important in this respect is 
the long-time (weeks) anvil-pressurizing of Ge-I at 2.5 GPa to obtain Ge-III at 
room temperature. This is known since 1965 [20] and has been confirmed in 
[21]. This value corresponds very well with the rapidly reached phase-transition 
pressure value of 2.3 GPa by spherical indentation. We conclude that there was 
enough pressure for the phase-transition under the sphere to yield the Ge-III 
polymorph. But we cannot exclude that this might have occurred via Ge-II that 
thermally diverted rapidly to Ge-I and Ge-III at the pressure of 2.3 GPa. Both 
anvil and spherical indentation techniques require X-ray diffraction analyses. 
Indentation is much easier and probably more precise than anvil pressurizing. 

7. Conclusions  

This paper compares the mathematical descriptions of conical, pyramidal and 
wretched indentations with the spherical ones and it numerically exemplifies 
them with literature data from germanium. The geometrically based mathemat-
ical deductions result in arithmetic formulas and application equations. Un-
precedented applications are developed. The physically correct formulas are up 
to replace the false formulas of ISO 14577 that rely on false premises that are still 
violating the energy law by using elastic theory and iterated projected (contact) 
area. We therefore urgently ask to abandon historical beliefs. ISO 14577 still stan-
dardizes incorrect standards and procedures that do not match with reality. The 
reasons for the inconsistencies for more than a century are unrepeatable extremely 
complicated “mathematical deductions”. In addition to that ISO-ASTM use ex-
perimentally false standards not only due to not considering phase-transitions 
under load—that they cannot detect with their false formulas—, but also with 
poor force linearities and mix-ups of the standards. It is therefore clear that they 
could not create valid closed equations for indentations. Rather the false belief 
required numerous iterations, approximations, data-adjustments, and simula-
tions. Any control of experimental data had been impeded and did not occur in 
the mainstream. It produced false thinking and encouraged various data mani-
pulations. Some striking examples are challenged in [10] and [18]. These can 
only now be easily detected and often corrected by using our mathematically 
correct closed equations. We sincerely advocate to after all accepting the easiest 
application of geometry and arithmetic calculation rules for the correct analyses 
of indentation data.  

We complete and extend in this paper the geometric solutions for conical, py-
ramidal, wedged and spherical indentations by physically sound use of the in-
denter volume for the coupled pressure and penetration events and we deduce 
valid formulas and application equations. The calculation of the energies and 
transition energies of phase transitions upon indentation with the Berkovich in-
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denter is calculated in the usual way as in [11] [12] [14] [15] [18] up to 16 mN 
load. It confirmes the loading curve FN = kh3/2 from [13].  

The still worldwide accepted Johnson equation for spherical indentations  
(“ * 1 2 3 24 3P E R h= ”) has again been disproved with a trial Kaupp-plot FN vs h3/2 
that is not linear. 

The spherical loading curve does not at all proceed as a one exponent parabola, 
because the volume of the sphere calotte ( )2 3V h R h= π −  can be transformed 
into ( )3 1 3V h R h= π −  by multiplication with 1 = h/h. In correspondence to 
the deduction of Equation (4) into Equation (8) [13] one obtains  

( )3 2 1 3Nv svF k h R h= π −  (18v) and (18) as the plottable equation with a point 
by point variable dimensionless correction term. It provides the materials con-
stants ks1 and ks2 (mN/µm3/2) and the onset values of the phase-transition at the 
intersection of the regression lines. For the energetic terms one transforms Equ-
ation (18) into Equation (19) 1 2 3 2 3N s sF k Rh k h F= π − π + ∆  for the integra-
tions by taking care of their ranges to obtain the indentation energies Windent1 at 
the intersection point and Windent2 at an arbitrary point. The chosen point must 
be the same for the full applied work (full Wapplied = 0.5FN2h2). The unprece-
dented phase-transition energy Wtransition is then simply the balance of full Wapplied 
minus (Wapplied1 + Wapplied2).  

The unprecedented indentation energy and the phase-transition energy also 
for spherical indentations enabled the comparison of Berkovich indentations 
with spherical ones. This was only possible with the penetration forces (not with 
the full forces from the loading curves!) and thus also with the corresponding 
Windent1 values. Only these are comparable and the spherical Wapplied/Windent ratios 
are depth dependent.  

The indentations onto germanium were exemplified and the outcome is dif-
ferent with Berkovich at 4.149 mN load and with 42 µm sphere radius at 10.703 
mN load. These are different phase-transitions. The low energy transition (most 
likely twinning) must have been lost in the spherical case where one detects the 
Ge-I into Ge-III transition. 

Importantly, the spherical indentation reveals a reliable pressure calculation 
for the comparison with published hydrostatic anvil results, because the flat ca-
lotte surface at the low penetration depths is only slightly smaller than the cap 
surface (here 1.4%). The average calculated force/µm2 value of the phase-transition 
pressure amounts to 2.3 mN/µm2 (GPa) in excellent correspondence with the 
published anvil value of 2.5 GPa. These results support the interpretation of the 
hydrostatic anvil results. Such now possible comparisons are very rewarding. 

The presented geometric results are not only comprehensive for academia, but 
the search for phase-transition onset and energy under load is of immense im-
portance for practical applications and safety, because polymorph interfaces are 
prominent sites of cracking and crashing as imaged in [14]. False historical 
science must urgently be abandoned for the sake of sound mathematics with 
undeniable calculation rules. This helps in minimizing the risk for catastrophic 
crashes. One must now apply the geometry-based indentation in addition to the 
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macroscopic pulling and bending tests. Indentations on the geometric mathe-
matical basis is the only way for detecting materials’ phase-transition onsets and 
energies and temperature-dependent including activation energies [22]. The 
phase-transition onsets for stressed materials must be well above the highest 
imaginable stresses when they are at work. The search for them is indispensable. 
This includes the physical indentation control after long stress exposure terms, 
because a good phase-transition onset can become worse, as material grain struc-
tures can change by various influences. There are certainly liability problems, 
but it’s up now for an urgent revision of the still obligatory ISO 14577 standards 
that enforce false “State-of-the Art” techniques to certification agencies and 
from them to the producing industries. That is world-wide required for the sake 
of daily security, not only for the aviation.  
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