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PREFACE   
 
This open-access E-Book collects all of the 16 open-access publications with the 
author's challenges of false treatments of indentation data in the literature in an u
p  scaled  form  with  cross  linking  to  the  more  recent  results  and  some r
eplacements  of  older  formulas.  Not  all  of  them  could  be  developed  in  one 
publication at a time. It depicts the advancements from 2016 to 2022 on the basis 
of  now  mathematically  dedu  results  with  closed  and  universal formulas for a
ll types of solid materials. The enforcing ISO 14577 techniques can still not detect 
the more than common phase-transitions under mechanical stress with formation 
of dangerous polymorph interfaces. Their now very easy detection (actually  since  
2004)  helps  to  avoid  dangerous  failures  by  cracks  in  airliners, bridges,  buildin
gs,  polymers,  commodities,  etc.  This  affords  only  the  physically correct  calcula
tion  of  the  materials'  mechanical  properties  without  relying  on data-treatment
s, fittings, iterations, and simulations with not repeatable extremely complicated a
ssumptions for concurring with false historical equations.  
 
This  will  help  the  scientist,  teacher,  anonymous  reviewer,  editor,  technician, 
journalist, and certification agent for more easily finding out how urgent is it to 
strengthen  the  falsification  of  the  still  not  revised  ISO-14577-  ASTM  enforcing 
standards.  ISO-ASTM,  industry  and  academic  publications  must  stop  with 
accepting violation of the energy law. And mechanical intelligence must be freed 
from  faked  tabulated  mechanical  properties,  always  requiring  reliable  re-
determinations.  This is particularly  important  for  one-point technical indentation 
results  that  characterise  unknown  polymorphs  depending  on  the  applied  very 
high forces. 
 
Indentations  with  cones,  pyramids,  and  spheres  are  described  on  the  basis  of 
sacrosanct  calculation  rules  for  mathematically  founded  closed  universal 
formulas  for  the  dept  sensing  loading  curves.  These  can  locate  data-fittings  in 
published loading curves, handle peculiarities like initial surface effects, pop-ins, 
gradients,  pile-ups  and  of  course  phase-transition  onset  and  transformation 
energies. The errors from the ISO-ASTM 14577 standardisations are extremely 
large and further increased by their false attribution of "equivalent" cone angles 
to  the  pyramids  for  decreasing  computer  times  in  simulations. We  replace  the 
wrong exponent 2 on depth h versus normal force FN instead of correctly 3/2 for 
cones and pyramids, and deduce the variable R/h containing correction factor for 
spheres.  We  define  the  physical  indentation  hardness  and  the  physical 
indentation  modulus  instead  of  iterated  ISO-H  and  ISO-"Young's"  modulus  Er. 
Spherical indentations are compared with anvil pressurizations.  
 
The very precisely calculated applications cover all kinds of materials technology, 
solid-state  chemistry,  mineralogy,  biology,  earth  crust  geology.  Actually,  all 
applicants  have  to  be  aware  of  a  multitude  of  not  general  and  extremely 
complicated  multiple  simulation  schemes  and  fitting  formulas,  but  that 
requirement  is  now  removed  thanks  undeniable  calculation  rules.    And  there 
arise  liability  problems  against  uneducated  students  and  in  the  case  of 
catastrophic  failures  of  technical  materials  (crashes  of  airliners,  bridges, 
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buildings, earth quakes, commodities, etc). Not criticised is ISO 14577 valuable 
high-level standardization for correct experimentation. But properly revised 
indentation analyses remain a very important fast characterization technique for 
all kinds of solid materials. Depth-sensing indentations become even more 
important by this E-Book, despite the deplorable present situation by 
unappreciated physical correctness. 
                        
                                                                                                           Gerd Kaupp 
___________________________________________________________________________________ 

© Copyright (2022): Author(s). The licensee is the publisher (B P International). 
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ABSTRACT 
 
This book dealt with basic mathematics for physically correct                         
mechanical properties from indentations. The iteration-free physical description of 
pyramidal indentations with closed mathematical equations is  comprehensively 
described and extended for creating new insights in this important field of 
research and applications. The book also stated the force vs depth loading 
curves of conical, pyramidal, wedged and for spherical indentations on a strict 
mathematical basis by explicit use of the indenter geometries rather than                       
on still world-wide used iterated “contact depths” with elastic theory and violation 
of the energy law. The book also specified physical deduction of the loading 
curves for spherical and flat punch indentations, in particular as the parabola 
assumption for not self-similar spherical impressions appears impossible. This 
book contains various materials suitable for students, researchers and 
academicians. 

 
Keywords: Depth-sensing indentations with conical, pyramidal, spherical, and 

flat indenters; pop-in repair; pile-up reasons; basic algebra and 
trigonometry with calculation rules; challenge of false ISO 14577-
ASTM standards with ISO-H, ISO-Er, HV, etc and energy law 
violation; undue data-treatment, fitting, iteration, and simulation; 
correct loading curve formulas; H/E ratio challenge; false historical 
concepts and false Johnson formula; physical hardness=penetration 
resistance k (mN/µm

3/2
); physical indentation modulus Er-phys without 

iteration; force direction and side-area; pyramids' non-equivalence 
with pseudo cones;  phase-transition onset and transition energy 
detection; catastrophic crack nucleation at ( multiple) polymorph 
intersections;  long-range cracks formation; applications in 
crystallography for crystal structures; failure of technical materials 
including airliners turbines, bridges, superalloys, etc; earth sub-
mantle crust exploration and earth quakes; comparison with anvil 
pressurizations; detailed interpretations in solid-state chemistry, 
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plastics, biology, and medicine; chances for updates for reliable 
mechanical intelligence, requiring warning and case-wise  new 
indentation.  
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Chapter 1 
Print ISBN: 978-93-5547-921-1, eBook ISBN: 978-93-5547-922-8 

 

 

 

The Physical Foundation of        5   for 
Conical/Pyramidal Indentation Loading 
Curves: Scientific Explanation  
 
DOI: 10.9734/bpi/mono/978-93-5547-921-1/CH1 

 
 
ABSTRACT 
 

On  the  basis  of  fundamental  mathematics,  it  has  been  possible  to  physically 

deduce  the            relation  for  conical/pyramidal  indentation  loading  curves 

(where    is normal force,   penetration resistance, and   penetration depth) for 

conical/pyramidal indentation loading curves. It has been achieved on the basis 
of  elementary  mathematics.  The  displacement  of  material,  which  frequently 
partially plasticizes as a result of such pressure, is coupled with the productions 
of volume and pressure by the indentation process. As the pressure/plasticizing 

depends on the indenter volume, it follows that         
   

      
5  

, where the in

dex p  stands  for  pressure/plasticizing  and   for  indentation  volume.      does  
not contribute  to  the  penetration,  only     .  The  exponent     on      shows  t
hat 

while    is  experimentally  applied;  only   
    

 is  responsible  for  the  penetration 

depth  . Thus,            is deduced and the physical reason is the loss of   
   

 

for the depth. Unfortunately, when the Love/Sneddon deductions of an exponent 
2 on h were accepted and applied, this was not taken into account in instruction, 

textbooks,  or  the  earlier  deduction  of  a  number  of  common  mechanical 
parameters.    The  author  mentions  and  cites  several  unexpected  experimental 
verifications and applications of the correct exponent

3/2
.   

 
Keywords:  Force-depth  relation;  nanoindentation  loading  curves;  penetration 

resistance; physical deduction, pressure and plasticizing.  

1.1 INTRODUCTION 
 

Both Love and Sneddon, who mathematically solved the "Boussinesq's issue" in 
1939 and 1965 respectively, predicted that the normal force (  ) would be 
proportional to the square of the depth h for conical and, hence, pyramidal 

indentations. This is still utilised for the derivation of numerous mechanical 
parameters that are still in use and has received widespread acceptance in 
papers and authoritative textbooks. Numerous finite element simulations that 
employ quadratic displacement elements, such as those by Wang et al. [1] and 
Soare et al. [2], have also used Exponent 2. Such simulations are often claimed 
to concur with published loading curves. However, more precise analysis reveals 
since 2004 that the experimental exponent is     instead. Simulated and 
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experimental curves do not even correspond when published in the same paper. 
Only the analysis using the correct exponent can show, how to distinguish initial 
surface effects and phase changes under the load if these occur [3,4]. The linear 

correlation coefficient for the slope   (from    Vs.      ) continues to always 
prove         or for less noisy measurements          [5,6], and the cited 

more recent publications up to 2014). It was, therefore, possible to introduce the 
concept of penetration resistance     for the safe comparison of materials’ 

properties and compatibilities [6,7], the energetic of indentations with the 
important finding that     of    is used for the indentation work and     for all 

the other force-induced energetic events [7]. Temperature dependent 
indentations even allow for the calculation of the activation energy of phase 
changes from nothing else than from indentation loading curves [7,8]. What’s still 
missing was the physical reason for the experimentally verified successful 
exponent     on  , and this has been rightfully asked for by new-comers and 

experts in the field. Thus, the appreciation of the new exponent against textbooks 
(except [9]) requires the deduction of the Title formula. We report now on an 
unexpectedly short deduction of the physical reason that was not thought upon 
till now. 

 

1.2 EXPERIMENTAL BACKGROUND 
 

The instrumental indentation experiment uses in most cases a diamond indenter 
that is continuously pressed with normal force      onto a level surface until the 

continuously recorded depth   is reached. By doing so, the volume   of the 

indenter is intruded and it shifts material towards the bulk while producing 
pressure to it. Depending on the materials’ properties, such pressure   may 

persist (fully elastic) or it is partly released by some sort of plasticizing and 
migration with all of the known long-range effects. This scheme is principally 
equivalent with all of the different loading types normal to level surfaces and has 
been experimentally verified for all mechanisms of plasticizing [10,11]. Kaupp 
and Naimi-Jamal, 2013). Such retained pressure is, of course, used in unloading 
curves for the calculation of the elastic modulus, which does, however, not apply 
to the present topic. With this in mind, we can start the deduction of the exponent 
   . 

 

1.3 RESULTS AND DISCUSSION 
 

The indentation couples two processes that must be differentiated because the 
applied force must serve both of them. The production of volume is attributed to 
the fraction    

  for indentation. The production of pressure   loss of pressure 

(loss by plasticizing via pressure) to the displaced material is attributed to the 
fraction    

  for pressure. As the multiplication of both factors must give the 

product   , these fractional forces must have the exponents   and    , so that 

we obtain Equation (1.1). 
 
      

     
                                                                                 (1.1) 
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For the determination of the exponents   and  , we use the total pressure that 

could be reached at the depth   for absence of plasticizing. It is         of    
and we call it       . Equation (1.2) is evident, and the mathematical expression 

for the cone volume is       . 
 

                                                                                  (1.2) 
 

Equation (1.2) reveals that        and, thus, also     are proportional to    of the 

immersed cone. Formula (1.3) is, thus, obtained for cones and for pyramids, 
which occurs with the same proportionality. 
 

                                                                                    (1.3) 

 

Formula (1.3) reveals the    
   

 proportionality to the depth  , but    
   

 does not 

contribute to the depth. Nevertheless, when         must be     according to 

Equation (1.1), and this gives Equation (1.4). 
 

                                                            (1.4) 
 

The exponent     on    
    in Equation (1.4) reveals that while the instrumental 

indentation applies   , only the fraction    
    is responsible for the penetration 

and its depth  . This is expressed with the searched-for Equation (1.5), where we 
do no longer need the index V. 
              

                                         FN
2/3

                                                          (1.5)
 

The unavoidable pressure/plasticizing factor FNp
1/3 

is lost for the depth. This is the 

physical reason for the exponent     on   instead of recently assumed 2 for 

cones and pyramids. 
 

1.4 CONCLUSIONS 
 

The straightforward physical deduction of the exponent     on   with elementary 

mathematics for indentation loading curves of cones and pyramids reveals a 
clear-cut physical reason. It will certainly strengthen the appreciation of exactly 
quantitative instrumental nano-, micro-, and macro-indentations with conical or 
pyramidal indenters. When required, the respective penetration resistance 

constant            can be easily parameterized (see Equation 1.2). An 

example would be when a penetration resistance   shall be compared with 

different indenter half-angles  . But when the exponent on   of loading curves is 

used for hardness  , modulus  , or further parameter calculations, the correct 
exponent     should be used (but not 2 as for example at Oliver, [12], and many 

others). Also the numerous recent plasticity parameters for biological materials in 
a tutorial of Oyen and Cook [13] were deduced with the unsupported exponent 2 
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on  , and require urgent correction. Only the correct exponent     allows for 

more advanced important applications that revealed and will reveal unexpected 
materials’ qualities. Some of these are named in the Introduction, others can be 
found in the cited papers of the present author. Reliable mechanical qualities on 
the sound physical basis are most important for the proper adjustment of 
technical and medicinal composites and joints, for safety reasons. This is 
particularly important in the pressure range for phase changes, the onset of 
which can only be detected in the loading curves by analysis with the correct 
exponent     on  . It is hoped that all of that will now be acknowledged in 

teaching, textbooks, and used for technical applications. 
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Significant Effects of the Exponent 3/2 for 
Pyramidal and Conical Indentations: New 
Meanings of Physical Hardness and 
Modulus 
 
DOI: 10.9734/bpi/mono/978-93-5547-921-1/CH2 

 
 
ABSTRACT 
                 
The now physically founded exponent     that governs the relation of normal 

force to depth
3/2 

in conical/pyramidal indentation is a physically founded    

 ℎ 3/2. Strictly linear plots obtain non-iterated penetration resistance  (mN/  m 
3/2 ) as slope, initial effects (including tip rounding), adhesion energy, and phase 

transitions with their transformation energy and activation energy. The Sneddon 
hypothesis fails because it uses the incorrect exponent 2, just like ABAQUS or 
ANSYS finite element simulations. This is because they ignore long-range effects 
from shearing. Polynomial fits and "best or variable exponent" iterations for curve 
fittings, which eliminate all distinctive information from the loading curve, are prior 
unjustified attempts to explain the absence of exponent 2. Also the ISO 14577 
unloading hardness      and reduced elastic modulus        lack physical reality. 

They are redefined to physical dimensions as new indentation parameters       

and        . For the first time, only based on loading curves, the physically sound 

indentation hardness Hphys is determined. Additionally, all Sneddon's exponent 2 
dependent mechanical indentation parameters are illogical. They need to be 
redefined in terms of new dimensions. In a recent NIST lesson, this also applies 
to the visco-elastic-plastic parameters. The current ISO standards lead to a 
physics conundrum. However, there is a risk involved in applying the incorrect 
mechanical parameters to physics, and this risk is unstable.  

  
Keywords: Adhesion energy; composites compatibility; first energy law violation; 

hardness and modulus definition; indentation exponent; physical 
consequences; penetration resistance; material’s failure risk; undue 
iso-standards; undue tutorial. 

 

ABBREVIATIONS 
 
AFM : Atomic Force Microscopy 
CFG : Common Fine Grain 
FE : Finite Element 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Significant Effects of the Exponent 3/2 for Pyramidal and Conical Indentations: New Meanings of  

Physical Hardness and Modulus 
 

 

 
9 
 

ISO : International Standardization Organization 
JKR : Johnson, Kendall, and Roberts technique 
NIST : National Institute of Standardization and Technology 
PEEK : Polyetheretherketone 
PMMA : Polymethylmethacrylate 
POM : Polyoxymethylene 
UFG : Ultra-fine Grain 
 

2.1 INTRODUCTION 
 
According to ISO 14577, diamond Berkovich indenters continue to be the main 
standard for instrumental nano-, micro-, and macro-indentations. These 
standards are based on contradictory mathematical inferences made by Love [1] 
and Sneddon [2], who claimed proportionality of the applied normal force    (they 
called it P) and h

2
 for the loading curves (h denotes penetration depth) for all 

different types of (pseudo)conical indenters (the pseudo cone concept is no 
longer valid; see chapter 16). The belief that this exists is widely held in 
publications and textbooks, however experimental loading curves do not support 
this. Finite element (FE) simulations continue to converge with exponent 2 on h 
despite the numerous iterative "excuses" for this discrepancy that have been put 
forth. The published experimental loading curves analyse with exponent 3/2, 
refuting claims that they would replicate experimental loading curves [3,4]. In that 
situation ISO 14577 concentrated on the iterative analysis of the unloading curve 
with freely iterated exponent on ℎ  (between 1 and 3 ) for gaining values of 

indentation hardness      and reduced elastic modulus       . Such iterations 

are with respect to standard materials and projected area    . Analyses (rather 

than fitting) of    versus ℎ    plots of published loading curves in the literature 

(and of own ones) starting from 2000 by the present author [5] validated the 
exponent     by linear regression with excellent correlation coefficients of at 

least         and in less noisy cases          for the materials penetration 

resistance            . Nevertheless, this met with severe difficulties from 

anonymous referees for being supported and published, as these claimed to 
consistently find "exponent 2" on ℎ. But analysis for exponent 2 or     is a matter 

of some minutes with Excel®, provided correct experimentation. Liability facts 

and unexpected applications with precise calculation were hardly appreciated. 
Only the correct analysis (Eq. 2.1) with excellent linear regression reveals 
surface effects (including tip rounding), influence of tip angle and radius on  , 

gradients, mechanical pretreatment, alternating layers, elbows, nanopores, 
phase transitions under load, transition energies, activation energies, and correct 
adhesion energies, all by simple mathematics without iterations (Eq. 2.1) [4,6-9]. 
 

    ℎ                                                                                                 (2.1) 

 

The constant             is the penetration resistance, a materials property 

that is obtained with the highest precision in the (nano) indentation experiment, 
rather than multi-iterated hardness, reduced modulus, etc. After the recent 
physical foundation of the exponent    , giving the explanation why it must be 
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so, by considering both the simultaneous volume-formation and the thereby 
created total pressure with elementary mathematics [10], the physical law (2.1) is 
additionally enforced beyond any doubt and cannot be denied any more. Some 
updates in the bioarea are available elsewhere and may find attention of the 
readers [11-13]. We must herewith point out the necessity of using this new state 
of the art for removal of the dilemma between ISO 14577 and physics (for undue 

NIST tutorial from 2009) for all mechanical parameters that rely on ℎ . They must 
be re-defined, and all the corresponding mechanical data require correction. Also 
the critics of three different working groups on the exponent     on ℎ [14] (before 

its physical deduction) deserves retraction: the self-similarity of conical/pyramidal 
indenters is by no means a "straightforward proof" for the unsupported exponent 
2 on ℎ, but it violates the basic energy conservation principle. 

 

2.2 MATERIALS AND METHODS 
 
A fully calibrated Hysitron Inc. TriboScope

®
 Nanomechanical Test Instrument 

with a two-dimensional transducer and leveling device in load control mode was 
used for the author’s nanoindentations after due calibration, including instrument 
compliance. The radii of the cube corner         and Berkovich          
diamond indenters were directly measured by AFM in tapping mode. Three-
dimensional microscopic inspection of the indenter tips secured smooth side 
faces of the diamonds for at least     from the (not resolved) apex. The 

samples were glued to magnetically hold plates and leveled at slopes of     in   

and   directions under AFM control with disabled plainfit, and loading times were 

        for         or 3000 data pairs [4]. The whole data set of the loading 

curve was used for analysis, using Excel®. Most analyses were however with 

published loading curves from the literature, as rapid sketches with pencil, paper, 
and calculator (10-20 data pairs), but for linear regressions always by digitization 
to give 50-70 almost uniformly arranged data pairs using the Plot Digitizer 2.5.1 
program (www.Softpedia.com), unless complete original data sets could be 
obtained from the scientists. The precise kink positions were obtained by 
equating the linear branches before and after the phase change, and precise axis 
cuts from the regression lines. It was tried to cover all different materials types, 
all different indentation modes, equipments, response mechanisms, depth 
ranges, penetration resistance sizes, from numerous authors from all around the 
globe. Only the experimental curves are relevant, not the simulated ones. 
 

2.3 RESULTS AND DISCUSSION 
 
Information loss by finite element simulations, beliefs, polynomial fittings, 
and exponent iterations 

 
Finite element simulations of loading curves (ABAQUS or ANSYS, etc.) 
consistently converge with the exponent 2 on ℎ (e.g. [3]). There is thus never 

match with experimental results. However, there are claims that 
microindentations would require "exponent 2". For example, Oliver and Pharr [15] 
depicted in 1992 deep non-discussed Berkovich microindentation loading curves 
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of soda lime glass, sapphire, fused quartz, and  -quartz (001) up to       load, 

for obtaining unloading curves for hardness and elastic modulus iterations. But 
the former were not focal for that paper on unloading curves. All of these "loading 

curves" analyze with the impossible    versus ℎ  relation, but experimental 

curves from various authors (including WC Oliver) go with ℎ    (including those 

with phase change kink), as for example analyzed in       . I apologize for 
having believed in their validity in        [17]. There is, however, no exponential 

differences between nano- and micro- or macro-indentations (as long as these 
proceed properly with smooth tips and without cracks). All of these loading 
curves obey Eq. (2.1)        . It is thus not clear why the loading curves in [15] 
analyze with the (now disproved) Love/Sneddon exponent. Importantly, only the 
correct exponent could reveal the phase change of the standard fused quartz for 
  and    iterations at about       load [4,16]. 

 

The polynomial fitting       ℎ
    ℎ      for the total loading curve [18] has 

been widely applauded. But it provides no information about initial effects, 
gradients, or phase transformations at all, and polynomial fittings are unreliable in 
view of linear regressions. Furthermore, iterated parameters    and    are often 

used to calculate exceedingly large "effective tip radii"(disproved in Chapter 16) 
up to       (for example for a Vickers with     semi-angle   that is close to the 
one of Berkovich at       ), depending on the yield-strength/modulus ratio [18]. 

However, blunt Berkovich tip radii range from 150 to       . Such uncredible 

polynomial fitting parameters, are being used as an excuse for not obtaining the 
believed exponent 2 at the expense of linear regression with the physical 
exponent    . Importantly, properly executed experimental loading curves are 

required for exponential analyses. This implies indenters with flat side-faces, 
vertical (not tilted) indenting onto homogeneous materials with plain surfaces that 
must not be influenced by nearby impressions, or too close sample edges or 
sample borderlines, in order to avoid strange results with spurious too large 
exponents up to      or even   . Unfortunately, leveling equipment for skew 

surfaces (with AFM precision check) often lack in commercial nanoindentation 
instruments. Nevertheless, measurements with blunt Berkovich            
giving unusually long initial effects were tried to "discredit" the exponent     with 

the    versus ℎ    plot of fused quartz in Fig. 2.1 [19]. However, this plot 

confuses the 3 initial-effect points with the not considered straight line through 
the points # 4-17 at the actual kink position where the steeper second linear 
branch starts. Rather, the authors absurdly intersect a line through points #     

with the extrapolated second straight line from point17 onwards. Such 
intersection is far away from the plot. The false claim is then made that "Kaupp" 
would also have intersected with initial effect points at his analyses of the same 
material in             . However, Kaupp has always excluded initial effects at his 
regressions, and he provided obvious reasons for their occurrence. The actual 
kink (    and    lines) is at about       and       . This is not too far away 

from the values for the known sharp Berkovich indents (2-2.5    and 120-160 

   )              at very minor initial effects. The experimental data printed 
curves of [16] are therefore supporting but not at all "discrediting" the exponent of 
Eq. (1), if considering the unusually extended initial effect range (axis cut of the 
   line at about       ; not drawn in [13]) at this indentation. Nevertheless, the 
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authors in [13] deny their obvious support of ℎ   . Rather they undertook 

exponent fittings with       (not italicized for distinction from physical   values) 

for varying depths onto fused quartz for proposing varying depth/exponent and 
depth    relations. They refrain from indicating the dimensions of the so obtained 

variable proportionality constants. The published data sequence for different final 
depths onto fused quartz is as follows [19] (only the dimensions are now added): 

Up to       depth,                         ; upto                   
                   ; upto 80                                   ; upto 

                ,                          for the overall curve [19]. It 

does not help to compare with FE simulations including further parameters. All of 
that is physically unsound and totally meaningless, but obviously not recognized 
by the authors, referees, and editors [19]. Clearly, one was not willing to 
recognize specific properties of materials under loading stress and strangely 
strived for concurring with the disproved Sneddon theory. The exponent on ℎ is 

with mathematical precision     and the dimension of   is (force/length
3/2

) [10]. 

Minimal deviations are  experimental errors. Initial effects (including tip rounding 
contribution) are quite common, and phase transitions upon indentation loads 
prior to macroscopic cracking are frequent. These are important properties! 

 
 

Fig. 2.1. Load (dotted) and JKR fitted unloading curve (full) on PDMS from a 
spherical indentation with radius of                              

[6] ( cf Chapters 9 and 13) 

 
Different iteration induced flaws, provides the JKR (Johnson, Kendall, and 
Roberts) treatment of adhesion forces, even though these iterations start with the 
Hertzian exponent     for spherical tips or rounded AFM cantilevers. However, 

based on the penetration resistance   the       error of the JKR-adhesion 

work is easily revealed both from indentations and AFM force curves. This has 
first been described in [6] and is another important application of Eq. (2.1). Both 
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curves (loading and iterated unloading) in Fig. 2.1 strictly follow Eq. 1 as well. 
Thus the full gained adhesion work (determined as pulloff work) is calculated by 
the triangle area, as described by    and  ℎ, of the unloading curve giving the 

absolute value for                 ℎ              . The published JKR 

treatment reported the    -value (that is called a basic JKR-formula) as    
            ℎ      ℎ  ", where         is "the radius of curvature of the tip, 

and the reported    is             , which is dimensionally a force constant, 

but it can also be interpreted as work over area by extension of the formula, as 
indicated by the bracketed ℎ. By division of the absolute         value from our 

not iterating ENERGY technique [6] by the calotte surface of the spherical tip 
    ℎ  one obtains       area                ℎ     ℎ              , now 

with the same dimension for comparison with the JKR   . We immediately see 

from the quoted    formula that JKR divides 4 times the work over     times the 

area, instead of ENERGY technique’s correct work/area. The mathematically 
exact error of JKR calculates therefore from the wrong numerals     in its "basic 

formula" instead of      . The ratio     over      is           . This 

corresponds to a JKR error for    of                  that is nicely 

confirmed by the numerical data:                        . This huge JKR 

error is particularly detrimental, as it also occurs (with the same      error) in 

AFM force-measurements (a typical example is presented in [6]) and that these 
  -values are used for the "determination" of reduced elastic modulus values 

according to the JKR formula              that are thousand-fold 
"determined", used, and tabulated, particularly with soft medical/biological 
samples. There must be correction of all the tabulated elastic moduli from JKR-
adhesion work. 
 
Particularly strange are suggestions to deny the universal exponent     on ℎ, 

and the unexpected practical applications of Eq. (2.1), but to base the 
exponential analysis on FE simulations [14]. The authors from the three research 
groups do not separate out the initial surface effects and deny often occurring 
phase transformations, obviously because the search for them is impossible with 
FE simulations. It is unscientific to use fitted data or FE-simulated curves that 

converge to   , and to recalculate these for      with the aim to discredit the 

experimental (now physically founded [10]) exponent    , because such 

treatment inevitably gives bent curves. Such a "treated" curve was used for 
drawing tangents at the start and the end in Fig. 2.2 of [14] that intersect far away 

from the plot, for designing a false discrediting term called "Double   ℎ    fit 

after Kaupp et al." [14]. However, Kaupp et al. do not fit treated data but are 
analyzing experimental loading curves according to the physically deduced 
universal Eq. (2.1) [10], Chapter 1 to uncover individual properties (e.g. phase 
change yes or no) that are wiped out by data fittings or simulations as in        . 
It is unclear, where the data of [14] in opposition to physics [10] and to the 
published ones came from, and who did the calculations for fused quartz up to 
      load on what assumptions. The polynomial or FE correlations (Table 2.1) 

[14] are not helpful (for example phase changes are unavoidable for the partially 
crystallized POM and PEEK thermoplastics or compacted    . Fig. 2 in [14] report 

either very different exponents (1.6 to      between 200 and         depth) in 
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different loading ranges, or a "constant exponent 2 " for the linear   versus    
plot, respectively: a very severe discrepancy! And the above reference [19] is 
invoked with its unintentional support of Eq. (2.1) and the phase transition of 
fused quartz. Furthermore, earlier experimental loading curves of the author K 
Durst et al. [4] (e.g. spruce or UFG and CFG Fe), as analyzed in Fig. 2.2, 
precisely follow Eq. (2.1) with sharp kinks at               , and        load. 
 

Penetration resistance reveals phase transformations 
 

When within the loading range of the linear plot a sudden sharp kink discontinuity 
occurs, this is the onset of a phase change under load (numerous images for 
fused quartz and all types of materials             . This is one of the reasons for 
errors that have not been addressed with      and        determinations. Only 

properly analyzed loading curves (Eq. 2.1) detect or exclude (Table 2.1) and 
plots in [4] phase changes of all kinds (not only structural transitions), but neither 
exponent fittings nor present FE simulations can do so. Phase changes occur 
with many materials already in the nanoindentation range. Only rarely and 
exceptionally were phase transitions concluded from "elbows" in unloading 
curves, but then without any transition-onset information. A widely studied 
example, also with more advanced techniques, is silicon (Chapter 8). Original 
material is characterized by the penetration resistance    before the kink in 

linearized loading curves. After the kink the   -value is obtained for transformed 

material in a matrix of the original one [4]. It provides an important bargain when 

both    and              are known: The transition energy [6], and 

temperature dependent also the activation energy of the transition are revealed 
[7]. When the onset of phase changes is not uncovered, there is often a risk that 
such transition-onset has occurred before the applied load. Clearly, not detected 
phase changes bear a high risk for materials’ failure upon aging under load and 
heat stress, when the mechanical load at the given temperature surpasses the 
transformation onset, for example with alloys, or ceramics, and other composites. 
Such failure upon impact can grow-up to disasters. Already that urges the 
correction of the corresponding ISO-standards as soon as possible. 
 

 
 

Fig. 2.2. Deduction of the long-range work energy upon pyramidal/conical 
indentations 
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Hardness and modulus 

 
ISO 14577 uses the unloading curve for iteratively obtaining the hardness      

with respect to standard materials (mostly fused quartz, or     with freely iterated 

exponent        . These iterations converge with respect to the standard 

material of "known" mechanical properties. However, the standard materials 
have in most cases different surface effects, and both undergo widely ignored 
phase transitions after their onset discontinuity (fused quartz in the nano-, 

aluminum in the microindentation region)       . 
 
The main objection of referees against Eq. (2.1) was the definition of the 
universal hardness (Martens hardness) as normal force over projected area 

       ℎ                                   (Eq. 2.2) with unit           . 

This covers the volume of ani nverted pyramid or (real) cone)       ℎ   . But Eq. 

(2.2) is undue, as it implies the false "    ℎ   as in Eq. (2.3). But we write here 

the complete definition of Huniversal with incorrect eqn. (3) to open a chance for 
perhaps correcting the frequent publications that use it (cf eqn (6) that relies on 
(1)).   
 

                                                                                               (2.2) 

 

                      and   ℎ       would give         ℎ  

                                                                                                       (2.3) 
 

ISO uses normal force over contact area     (effective     ) as opposed to the 

cone area            . Thus the covered volume is meant as the tube    ℎ    
or    ℎ . But physics [6] beats definitions. The "contact height" ℎ  is defined with 

reference to the standard at peak load Eq. (4), where        is an accepted but 

also debated dimensionless geometric factor, and   is unloading stiffness 

       , the unloading slope at peak load. The iterative determination of      

fits to the generally unrelated fused quartz that experiences some sink-in  ℎ    
ℎ    ℎ , depending on the indenter) for     at peak load. The iteration requires 

     ℎ    ℎ  
  where   ℎ      and exponent   (between 1 and 3) are freely 

iterated for the fitting down to     or eventually     of       which is also 

troublesome indeed [17,20].   at peak load is then obtained by differentiation 

       ℎ    ℎ  
       to obtain ℎ , for the calculation of         ℎ 

       

     ℎ 
  as a first guess for Berkovich           indentations.      is then 

iterated according to Eq. (2.5). Thus,      (Eq.2.5) also implies an    ℎ 
  

relation, which is against physics as is Eq. (2.3), both violating the physically 
founded Eq. (2.1) [10] that is also valid for       of course. Furthermore, any 

sink-in or pile-up is part of the energy requiring long-range effects. 
 

ℎ  ℎ                                                                                         (2.4) 

 

                          ℎ 
    ℎ    ℎ 

   
   ℎ 

   
       ℎ 

     
     

 m2                                                                                                                      (2.5) 
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Rather strange trials to "save" ℎ  and thus     for the hardness iterations are still 
invoking the trivial "self-similarity" of conical or pyramidal indenters for claiming " 

   ℎ  " and "        " (P stands for    ) [14]. Such assertion is surprising 

since it is amply known and discussed, that the shear-force from the cone or 
pyramid produces far-reaching phenomena to the sides and below the defined 
tube volume (these include sink-in or pile-up, plastic deformation, elastic stress, 
rosettes, shear-bands, and so on) [6]. Such long-range processes convert or 
store energy that is lost for the impression. The denial of such loss inexcusably 
violates the basic first energy law (applied work = produced work/energy): 
Equation (1) and simple algebra deduce that precisely     of the applied work 

(for all materials) is used for the sum of long-range effects and lost for the 
indentation depth [6-10]. The energy loss for the penetration as deduced in [6], is 
summarized in the basic Fig. 2.2. The experimental loading curve follows 

    ℎ    (Eq. 2.1) in all cases, also the spherical ones and the indentation 

work is obtained by integration to give             ℎ   . This compares with the 

linearly applied work (area of the triangle up to the chosen depth ℎ  ), which 

amounts to                ℎ      ℎ    by substitution of   . It is thus 

arithmetically clear, that precisely     of the applied work is lost for the 

indentation work due to the sum of long-range work contributions [6]. This is 
therefore valid for all materials and mechanisms (e.g. elastic and plastic 
deformations, material’s migrations, sink-in, pile-up, viscous flow) for all 
pyramidal/conical properly executed indentations, when detectable initial surface 
effects (that also contain tip rounding effects) are corrected for. In the case of 
sharply detected (kink in the plot of Eq. 2.1) phase change onset (endo- or exo-
thermic), a second energetic term that includes the transition energy is calculated 
accordingly [6]. Both         and            require their part from the normally 

applied force   , mathematically at an always constant ratio [6]. Thus, Eq. (2.2) 

(universal hardness) and (2.5) (ISO-hardness) violate not only the physically 
founded indentation law (1) but both hardness definitions also violate the first 
energy law, because they do not take into account that part of       that is lost 

for     of the work. They have been doing so for half a century. 

2. 
In order to stay within the energy law it is not necessary to care for a definition of 
ensuing "lengths" for the long-range work. The change of the ISO 14577 

hardness      has to occur in such a way that the     ℎ    relation (Eq. 2.1) 

and thus the first energy law are not violated. The same is necessary for 
          . The dimensionable redefinition of            or the previous ISO-

hardness, is thus by multiplication of       /            (or           ) with ℎ   
   

 

(Eq.2.6). But iteration-free is Hphys = k (the penetration resistance). Since sink-in 

and pile-up effects do not influence the exponent [10], the      -values (that do 

not longer depend on a standard) do not require    , and the universal    ℎ    

relation and the first energy law are obeyed by taking into account the long-range 
losses (long-range energy that requires part of the applied force) (Eq. (2.7). The 

dimension of physical indentation hardness       has thus the units          

        , the same as the dimension of penetration resistance   in Eq. (2.1). By 

considering the first energy law [6] we obtain (2.7) with (2.1) and have therefore 
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both a precise and simple way to obtain the physical indentation hardness       

(2.6), and also directly from conical or pyramidal indenters’ loading curves the 
indentation work Windent Eq. (2.7). It follows from Eq. (2.1) (that is also valid for 
      ) that only the loading curve is 

      

                                                 ℎ
   

                                                   (2.6) 

 
                            Windent = 0.8 Wapplied                                                 (2.7) 
 

required for         Eq. 2.(6) with the dimension of the penetration resistance  , 

opens an easy and simple way to obtain the physically deduced hardness 

                                   without iterations, only from the loading 

curve with the unbeatable penetration resistance    (before the kink) by linear 

regression. The tip rounding initial effect is not part of the linear regression of the 
penetration resistance (but it plays a role for adjustments between different 

pyramids/cones        . For the first time, this new technique controls the final 
load below any phase transition onset. The precise technique makes obsolete 
the iterative determination of a "contact area", and undue experiments (e.g. tilted, 
too tight with others, etc.) are easily detected. Unfortunately, conversions of 
previous      into       values are not easy due to the various iterations within 

the ISO-treatment, but           does not have iterations due to totally different 

standard. The ℎ    values would however require the loading curves or original 

data. The correction of indentation                 into                 works by 

 

a) isolaton of ℎ   
  :                           ℎ   

         ; non 

physical);          ,       must be known; 

b) calculation for ℎ   
   

 :                     ℎ   
   

          ; physical); 

      can be calculated, when       is known. 

 
The results are exemplified in Table 2.1 from a paper [3] that published both 
experimental loading curve and finite element simulation loading curves far below 
of a phase change onset. One remarks considerable differences between      

(from unloading curve with excessive iterations of aluminum on silicon for fitting 
with the ISO standard). Importantly, it is easiest to correct  finite element  -

values, because the unphysical exponent 2 cancels out by the correction with 

hmax
1/2 and Hphys and simulated       are so quite similar. However such good 

correspondence is only possible when absence of phase change onset is 
experimentally secured at     , which finite element simulation cannot predict or 

exclude. The necessary   and    values must still be determined from loading 

curves (Eq.2.1 or analogous for simulated    with different dimension). 

 
Similar to     , the definition of the modulus        contains    , which does not 

comply with the long-range effects at peak load, is against physics. A quantitative 
connection to the penetration resistance   of the loading curve is however lost, 

because the unloading slope is needed for         . Also here, peak load must 

be below any kink load in the linearized loading curve (Eq. 2.1), in order to study 
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the pristine material. It follows for both reasons that        values of indentations  

are not appropriate, because they also violate physics by neglecting the energy 
consuming shearing effects.  
 

The correction of indentation Er-ISO (GPa) into                    ) works by 
 

(a) isolation of ℎ   
  : when        is known; ℎ    and reliable   before phase 

change onset must also be known; 
 

(b) calculation for ℎ   
   

 :         can be calculated, when ℎ    and reliable   are 

known. 
 

The application of non-physical      and non-physical         as well as from 

these derived further mechanical parameters in theoretical and practical 
mechanics, bears high risks for materials’ performance and must be stopped. 
Tabulated materials’ properties must become reliable for artificial intelligence AI 
and for centuries. Therefore, the most precise and undeniable penetration 
resistance        , and         should be urgently used for the characterization 

of materials and the compatibility of different materials, including solder etc. [8,9]. 
 

Undue tutorial parameters 
 

All "Sneddon theory"-derived mechanical indentation parameters rely directly or 

indirectly on the presumed incorrect "    ℎ   relation. This is exemplary 

demonstrated with some of the incorrect parameters that ensue. For example, 
NIST authors [22] published a tutorial in 2009 , as based on their earlier 
publication [23], with the erroneous deduction of six "viscous-elastic-plastic 
mechanical parameters". The authors used their loading-rate dependent 
Berkovich indentations onto PMMA and claimed that all of their published curves 
        would obey the Sneddon exponent 2 on ℎ. But NIST could have easily 
found out that their loading curves of PMMA with a sharp Berkovich indenter 

fantastically support the universal    versus ℎ    plots (Eq. (1)) with excellent 

straight lines for all of their loading rates from zero to their very deep penetrations 
(down to maximal depth of       ), within less than       , and with excellent 

linear regression. So NIST missed the validity of exponent     instead of 2 . 

Rather, starting with the non-supported equations "        ℎ 
   and "     

    ℎ 
   (sub-p for plastic, sub-e for elastic) and after various steps (with inclusion 

of a "quadratic viscous element") they defined thus six incorrect mechanical 
parameters: 
 

             
                                                

"          " as "indentation viscous flow resistance" (with    as rise 

time), and the double logarithmic plot of   versus   was termed 

"indentation behavior map", 
"1/e = 1 + 1/y + 1/d" (with e as “elastic fraction”), 
"H = FNmax y

2
/hmax

2
 α1 e

2
", and "Er = FNmax/hmax

2
 α2 e

2
". 
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There is no experimental or physical basis for that and these papers from NIST 
(a prominent ISO member) require urgent retraction (after the successful physical 
deduction of Eq. (2.1) [10]). It is to be expected that a tutorial from 
representatives of the US-agency, which is responsive for standardizations with 
close to legal character, will be largely understood as a "state-of-the-art". But it is 
against physics. Therefore, an enormous risk has been arisen with this "tutorial" 
that has already been widely taught and used to produce and tabulate wrong 
data, with the potential of doing harm primarily to biology and medicine, but also 
to all further research on (nano) mechanics. 
 
Furthermore, all the other textbook mechanical indentation parameters that 

directly or indirectly rely on ℎ  require re-deduction, by starting with the physically 

correct exponent    , and it has always to be considered that their dimensions 

will unavoidably change. The indentation experiment is now a quantitative 
technique on the basis of the new physics with the penetration resistance  , the 

inverse of which has been called penetrability [4]. The easily obtained 
penetration resistance, detects phase transition onset and conversion energy as 
well as activation energy, etc. and it provides detection of physically correct 
indentation hardness   with correct dimension, all from the loading curves 

without iterations or simulations. 
 
Table 2.1. Comparison of an experimental unloading curve HISO of Al on Si 
with loading curve Hphys and ANSYS finite element simulated corrected or 

uncorrected H-values from [3] 
  

Technique hmax
 n
 

 
k or k

'(a)
 Basis Hardness only from the loading curve 

(not HISO) 

Experimental 
with  
h max

1/2
 factor 

h max
3/2 

 k = 7.4425 
(mN/µm

3/2
) 

FN = kh
3/2

 
 

Hphys = k/πtanα
2
 = 0.30373 

(mN/µm
3/2

)independent on FN and hmax 
(before phase change) 

Experimental no 
correction 

 
h max

3/2
  
k = 7.4425 
(mN/µm

3/2
) 

FN = kh
2
 

wrongly 
 

HISO = 0.761; Huniv = k/πtanα
2
 = 0.60745 

(mN/µm
2
)  

k +hmax
1/2

 are needed for correction (value + 
dimension) 

Finite element no 
correction 

hmax
2
 

 

k' = 4.7433 
(mN/µm

2
) 

FN = k'h
2
 

 
Huncorr = k'/πtanα

2
 = 0.60167 (mN/µm

2
) 

false dimension, multiply with hmax
1/2 

when 
available 

Finite element 
with hmax

1/2 
factor 

 

hmax
2
 

 

k' = 4.7433 
(mN/µm

2
) 

FN = k'h
2
 

 
Hcorr = k'hmax

1/2
/πtanα

2
 = 0.30083 (mN/µm

3/2
) 

 (k' with dimension mN/µm
2
, must be 

determined) 
(a) simulated parameters are not italicized; these entries rely on the bona-fide believe in the pseudo-
cones for pyramids and would  falsely assume that these values were obtained from real cones with 

their alpha half angles, cf Chapter 16 
. 

2.4 CONCLUSION 
 
The recent physical foundation of the universal exponent     on 

pyramidal/conical indentations enforces appreciation of the abundant empiric 
results, and that has important consequences. Thus, the ISO 14577 indentation 
hardness     , the reduced elastic modulus         and the there from deduced 
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mechanical parameters must be urgently corrected in dimension and value, to 
provide the physically sound              , and there from deduced parameters. 

Their perhaps odd appearing dimensions are the peculiarity of indentations with 
pyramids and cones, applying both normal force and lateral force at the same 

time. The present ISO definitions rely on a wrongly proposed [1,2] "F      
relation and thus also on the undue reference to "projected area     ". Its 

application does not consider the far-reaching shear-force effects outside the 
   ℎ object and is thus violating the basic first energy law. Physically sound 

hardness is now for the first time obtained from the loading curves without 
iterations or simulations by only using simple algebra, and       is now a 

genuine physical parameter. Also all other mechanical parameters for pyramidal 

and conical indentation that rely directly or indirectly on disproved " ℎ   from the 

loading curves require redefinition and re-determination by using ℎ    instead of " 

ℎ  . The almost universally published wrong mechanical parameters from 

indentations and AFM force curves constitute high risks that are often adopted 
and defended, subject to change. The large errors caused by the wrong 
exponent are exponential dependent, not proportional. Any non-appreciation of 
the physical exponent is at risk for the stability of incorrectly-calculated composite 
materials and solders, as for example implanted endo-prostheses (mechanical 
adjustments to the actual bones of the composite, "bone cements", alloys, 
composite ceramics, coatings, and inlays, adhesion energies etc.), or composed 
materials of daily life (for example longevity of turbines, cars, airplanes, medical 
implants, etc.). Wrong parameters against physics (values and dimensions) must 
be adjusted to avoid cracking and failure, when materials are under mechanical 

and thermal stress. It is the penetration resistance             ) of the 
components that must closely be adjusted to coincide for the applied force and 
temperature ranges. Of particular importance are the now easily recognized 
phase changes under load as detected by the onset of sharp kink discontinuities 

in the    versus ℎ    plots that must always be considered. Different components 

have their transitions at different pressure and different temperature onsets. 
Thus, their now also available transformation- and activation-energies require the 

capabilities of the penetration resistance            . This should help in 

adjusting the components of mechanical and thermal stressed super alloys with 
their grains and domains that must be optimized, etc. 
 
Textbooks must be rewritten, new dimensions of mechanical indentation 
parameters accepted. This is a tremendous task, because all mechanical 

parameter’s dimensions become different. For spherical indentations ℎ    is long 

iteratively used, but please do not use JKR technique with      error. Thus, 

both the Hertzian-type  ℎ     and Sneddon-type  ℎ   analyses that are offered to 

choose from at some instrumental AFM-software require correction or 
cancellation of HISO            , and all mechanical parameters that are derived 

from        ℎ  exhibit huge systematic errors after very complicated data 

treatments with iterations, simulations, and approximations. Fortunately, the now 
available physics detects iterative data-fittings and allows for precise algebraic 
data evaluation. Nobody in the field can reasonably continue proceeding against 
basic physics. The numerous unexpected possibilities with quantitative 
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indentation loading (or AFM force-curves’ scanning) must be pursued on the 
available easy and precise algebra. Further unexpected applications are 
expected by the measurement of penetration resistance,                    and 

mechanical phase transformation onsets with energies of transformation and 
energies of activation. 
 
ISO and its member NIST cannot abruptly but only considerately change their 
standards, because all academic and industrial players are trained with their non-
physical formulas and thinking from the hard to repeat or realize high 
mathematics of [1-2] that did not consider the first energy law. Therefore, 
ISO/NIST should now release a caveat relating to their ISO 14577 standards, 
telling that new physical results (with proper citation of open access work [10]) is 
being processed for unexpected revision, as a first step. This would create 
relieve from dilemma of ISO against physics and exempt security engineers in 
industry and administration who are bound to ISO standards from the dilemma 
concerning liability questions when using either physical state of the art or non-
physical standards. Worldwide ISO and ASTM are slow in making the urgent 
change of their ISO 14577 standards. The clear wording is required to speed this 
process for a smooth non-chaotic change to physical standards for the sake of 
every days’ security. 
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ABSTRACT 

 
The physically founded           relation is the foundation of the quantitative 

conical/pyramidal depth-sensing indentation, without fittings, iterations, or 
simulations. The linear plot with excellent regression's constant k (penetration 

resistance,         ) eliminates early surface effects, indicates significant 

phase transition onsets, conversion and activation energies, and reveals severe 
errors. These possibilities are absent from the failing Sneddon theory of ISO, 
which also ignores shear-force work and breaks the first energy law from almost 
fifty years. The denied but strictly quantified loss of energy (    for physical 

            at believed   ) violates the first energy law and disregards the loss 

of energy for the penetration. The correction factors h
1/2 

and     are applied via 

joint maximal force to the FE-simulated ISO hardness, and ISO modulus that 

unduly rely on   , to give approximately the physically founded values with their 
correct dimensions. Hphys is directly obtained from the loading curve regression 
using previously corrected k-values.  Previous incomplete corrections are 
rectified. Discussions of the new dimensions and daily risk responsibilities 
resulting from the ISO versus physics conundrum take into account the influence 
that hardness and modulus have on all mechanical characteristics in relation to 
technology, biology, medicine, and everyday life.  
  
Keywords: Correction of ISO hardness and modulus; energy law violations; 

failure risks; false materials parameters; false ISO-standards; 
indentation exponent; new hardness and modulus definitions; 
penetration resistance; physical consequences; physical hardness 
from loading curve. 

 

3.1 INTRODUCTION 
 
The energy conservation law is the most fundamental natural and technical rule 
that cannot be ignored and must always be properly followed. No organisation 
may deny its authenticity because it is something that all worlds depend on. 
However, despite the exhaustively complex mathematical calculations of 
Sneddon and Love [1,2], ISO and its US affiliate NIST continue to violate ISO 
norm 14577. These writers, however, plainly overlooked the shear-force work 
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that occurs when a stiff indenter is compelled to penetrate vertically into a solid. It 
must be very obvious that the rigid indenter's pressure (and/or plastic 
deformation) against the solid substance it has displaced requires work. 
Nevertheless, the whole applied force and thus the whole applied energy is still 
falsely considered to be only acting in vertical direction of the impact. 
Unfortunately, there was no protest from physics. Rather the work of Oliver and 
Pharr [3] on the indentation of cones or pyramids was highly acclaimed and 
adapted by ISO/NIST for ISO 14577. It thus became undisclosed that their 
assumed relation between force and depth is incorrect and that the hardness and 
elastic modulus determinations violate the first principle of energy conservation. 
Such disregard has still been retained till now, even though the unphysical 
exponent 2 on the depth   had been experimentally demonstrated to be replaced 

by     from the present author since 2000 with convincing evidence. 
 

In 1939 and 1965 two mathematicians solved the long standing Boussinesq 
problem using very complicated mathematics and came (with different constant) 
to the same exponent 2 on the depth   in relation to the normally applied force in 

conical indentation when the indenter remains stiff (Fig. 3.1). The Sneddon/Love 
exponent       has also been used for partly plastic response (it is a 
consequence of pressure!) by Oliver and Pharr in 1992 [3], the ISO standard 
14577, and finite element (FE) simulations (e.g. ANSYS or ABACUS software), 
even though the shear force of the conical (also unduely effective cone of 
pyramids, see Chapters 15 and 16) indenter to the environment did apparently 
not find any concern in physics. Some updates in this area are available 
elsewhere and may find attention of the readers [4-6]. Rather numerous fitting 
procedures were put forward over the years for the excuse, that the exponent 2 
on   could not be found experimentally but only with FE-simulations converging 

to such exponent. Thus, these historical mathematical deductions (Fig. 3.1) 
cannot be correct. It did apparently not help that the energetics of the conical 
indentation was for the first time quantitatively clarified in a publication from 2013 
[7] because the experimental exponent on   was consistently found as     

instead of 2 [8]. The thoughtful convincing physical foundation of exponent     in 

Equation (1) that followed prepublished since 2015 [9] requires only first grade 
mathematics. 

 

 
 

Fig. 3.1. Previous highest grade mathematic deductions of load-
displacement indentation curves with cones and pyramids 
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3.2 MATERIALS AND METHODS 
 
The author’s nanoindentations used a fully calibrated Hysitron Inc. TriboScope 

     Nanomechanical Test Instrument with a twodimensional transducer and 
leveling device in force control mode after due calibration, including instrument 
compliance. The samples were glued to magnetically hold plates and leveled at 
slopes of     in   and y directions under AFM control with disabled plain-fit, and 

loading times were         for         or 3000 data pairs       . The radii of 
the cube corner         and Berkovich          diamond indenters were 

directly measured by AFM in tapping mode. Three-dimensional microscopic 
inspection of the indenter tips secured smooth side faces of the diamonds for at 
least     from the (not resolved) apex. The whole data set of the loading curve 

was used for analysis, using         . Most analyses were however with 
published loading curves from the literature, as rapid sketches with pencil, paper, 
and calculator (10  20 data pairs), but for linear regressions always by 

digitization to give 50  70 almost uniformly arranged data pairs using the Plot 

Digitizer 2.5.1 program (www.Softpedia.com), unless complete original data sets 
could be obtained from the scientists with         or 3000 data points. They 

were handled with         . The distinction of experimental and simulated 

loading curves succeeded by performing the "Kaupp-plot" (3.1) revealing 

        (experimental), surface effects and most important phase changes’ 

onset [11]. The necessary force correction to comply with the energy law is made 
with the physical  -value (the slope). Only FE-simulated or iterated curves gave 

linear unphysical       plots. The linear regressions were calculated with 

        . In the case of phase changes the kink positions were precisely 

calculated by equating the regression lines before and after the kink. Initial 
surface effects were, of course, exempt from the linear regressions. Previous 
penetration resistance values   was corrected for complying with the 

energy/force / depth loss in Fig. 3.2. A 10-figures pocket-calculator was used for 
the physical calculations, but the final results are reasonably rounded. It was tried 
to cover all different materials types, all different indentation modes, equipments, 
response mechanisms, depth ranges, penetration resistance sizes, from 
numerous authors from all around the globe, in order to show their universal 
obeying to basic mathematics. 
 

3.3 RESULTS 
 

The mathematical clarification of the energetics upon (pseudo)conical 
indentation 
 

We proceed analogous to the deduction in Kaupp [7]. In force controlled 
indentations the total force    is linearly applied. This can provisionally be 
imaged together with an assumed normal parabola (with exponent 2) as is used 
by ISO etc. in a force versus depth diagram, as obtained by a FE-calculation 
from the literature (Fig. 3.3). Such normal parabola has the Formula (2). The 
work of the simulated indentation           gives (3) by integration. The applied 

work            is the area of the triangle under the applied work           in 

(4). Substitution of       from (2) into (4) gives (5). The ratio (            
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                          . That means: only             of the applied work 

(and thus also force) would be left for the indent and             would be for 
the sum of the reversible pressure and the mostly or completely irreversible 
plastic deformation energies to the environment. Clearly the disregard of     

from    when using the false    for the calculation of e.g. ISO hardness      and 

ISO modulus       , or universal hardness                
 , where       is 

projected indenter area, also called Martens hardness), is an obvious and severe 
violation of the basic energy conservation law. The long-known long-range 
effects and the elastic deformation would require here     of the applied energy 

that would be lost for the penetration depth with ISO, FE-simulation and universal 
hardness. But a correction for the false exponent is also required. 
 

                                                                                                   (3.1) 

 
            FN-simul = "const h

2
"                                                                               “(3.2)” 

                                                                                            (3.3) 
 

                                                                                            (3.4) 
 

                            
                                                                (3.5) 

 

 
 

Fig. 3.2. Slightly supplemented table from Reference [10] with corrected 
penetration resistance      (factor     , with unchanged correlation 

coefficients of various materials, indenters, methods, and authors for the 

whole length, all without phase transition up to     ; in view of more recent 
results all of these k values should be multiplied with 1.25 
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In order to clarify the unlikely objection that the applied force would be parabolic, 
we plot here in Fig. 3.4 both applied force and depth side by side against the time 
as these develop. It is, of course seen that these develop simultaneously with 
total    linearly but depth    parabolic. We can thus safely calculate the total 

applied work from the triangle as in Fig. 3.3 (or Fig. 3.5). Different ways of normal 
force applications (force controlled, displacement controlled, continuou stiffness, 
squared progression of the load increments) cannot decrease this applied work. 
Furthermore, the analysis of strongly creeping loadings (e.g. PMMA data in Fig. 

3.2) also gives the unfitted     parabolas (Fig. 3.1) with excellent correlation [8] 

excluding chances to improve the ISO- or FE-indentation efficiency. The formerly 
forgotten and not considered decreased energy for the indentation and thus also 
for the actual indentation load part is a striking violation of the first energy law. 
Only the fraction of the full applied work depends on the exponent on  . 
 

 

 
 

Fig. 3.3. FE-simulated force displacement curve for        thick gold 

assuming    with an ideal Berkovich and our comparison with the linearly 

applied total work (straight line from zero to       [7]); the force-corrected 

parabola would end at the (2/3)       point; evidently a large part of the 
applied work would be lost for the indentation; the dotted simulated force 

curve would precisely follow   ; the simulated data points were taken from 
Reference [11] (their Fig. 3b) 

 

But unfortunately, we have to respond against continuing strange attacks on the 
quantitative treatment of conical or pyramidal indentations without any 
approximations, simulations or fittings despite the publications      . The 
probably last denial of the well-established experimental evidence of the 
exponent     on   [12] repeat the offence of Troyon (advocating depth 

dependent broken exponents such as         or         on   without 

discussing the incredibly changing dimensions) [13], which is combined with the 
violation of the first energy law (not considering [7]). Furthermore, Merle [12] trie 
to invoke the undisputed self-similarity of cones and pyramids as theoretical 
argument. But Merle [12] incorrectly claims that this should be in favor of 
exponent 2. Self-similarity can by no means decide between the exponents in 
question. The exponent     is physically founded [9], and all data relying on the 
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false exponent 2 require correction with the dimensional factor     . Furthermore, 

these unduly opposing authors tried to discredit the successful Kaupp-plot    
  

versus        by calling it "Kaupp’s double        fit" [12] (P means force, the 

same as    here), even though the "Kaupp-plot" does not fit at all. They pretend 

that the kink (phase transformation) in the fused quartz example would have 
been claimed by intersecting an initial surface effect extrapolation line with the 
second linear branch, instead of equating the first and second linear branches 
(more of it in the Discussion). Kaupp has always been identifying surface effects 
and removing them from the regression. 

 

Experimental and physical basis of pyramidal and conical instrumental 
indentation 
 

The violation of the basic energy law is connected with the use of unphysical 
exponent 2 on   with implied assumption that the one third loss of the applied 

energy   force (Fig. 3.3) would not count for the peak load in the hardness   and 

modulus    calculations that use       for the start of the unloading curve. The 

connection is quite simple and direct with the definition of universal hardness for 
indentations                        (where       is the projected area of the 

indenter). This has been worked out in Kaupp [9] and Chapter 1 with the formula 

sequence (3.6) leading to a disproved unphysical ISO       relation: 
 

          FNmax = R
2 

Hcone and R/h and tan give FNmax = hmax
2 

tanHcone              (3.6) 

The ISO      
  relation is also obtained for the ISO-hardness            

   , where the so-called contact height    must be adjusted to a standard 

material in a complicated procedure, including two multiparameter iteration steps 
[10]. Clearly there are three undisputable flaws against physics with these 
hardness determinations: 1. the violation of the basic energy law, 2. the use of 
unphysical exponent and 3. the non-considering of the often-occurring phase 
transformations under load before the chosen peak load is reached, which can 
only be detected with the Kaupp-plot of (3.1). The energy law correction will be 
discussed in the next Section after presenting further support. The dimensional 
correction will be exemplified in the Sections dealing with the correction of 
hardness and modulus into physical values. 

 

 
 

Fig. 3.4. Plots of applied normal force FN and depth h against time in a 
typical load-controlled NaCl indentation showing linearity of the applied 

force and non-linearity of depth 
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The convincing physical foundation of exponent     in the force depth relation 

(3.1) [9] (pre-published in 2015) leaves no doubt whatsoever with respect to the 
present author’s analysis of his own and published loading curves from others 
who wrongly trusted and used the Sneddon/ISO/Oliver-Pharr exponent 2. All 
details of the loading curves can only be detected when the correct exponent 
    on   is used for the analysis. The details are lost with unphysical plots and 
more so with data fitting, iterations, or present FE-simulations. Conversely, the 

physically founded linear    versus      Kaupp-plots, as first introduced in 

lectures since 2000 , correct for initial surface effects, reveal phase 
transformation if they occur within the chosen force range. Furthermore, they 
detect alternating layers, gradients, pores, defective tips, tilted impressions, and 
edge interface or too close-by impressions. For example, fused quartz Berkovich 
indents exhibit the well-known amorphous to amorphous phase transformation 
[14,15] at about      or        applied work and 113 or        depth (analyzed 

loading curve of Triboscope or CSIRO-UMIS manual, respectively) [14]. This is 
indicated by a sharp kink in the Kaupp-plot, as it occurs in the chosen loading 
range          . 
 
The force    is linearly applied in force controlled experimental indentations. This 
can again be imaged together with the exponent     parabola, which is 

physically founded [9] and experimentally found (Fig.             ) and (1). Similar 
to Equations (3.2)-(3.5) deducing                  for the wrongly assumed ISO 

exponent 2 on  , the energetic deduction for the physical exponent     on   is 

given by the formulas (3.7)-(3.9). The physical ratio is thus                  

   . The difference       is for the shear force component exerting pressure 

and plasticization on the adjacent material. That means: precisely     of the 

applied work and (as    ) also applied force    is left for the penetration. Thus, 

    is for exerting the sum of pressure and plastic deformation energies to the 

solid environment. This is considerably less loss for the indentation than if the 
assumed unphysical exponent 2 would apply (33.33%, see above). The new 
knowledge is expressively supported with Fig. 3.5 that shows the difference in 
relation to the Fig. 3.3 for the false exponent. 

 

          

 

                                                                                               (3.7) 

 
                                                                                             (3.8) 

 

                      
   

                                                                        (3.9) 

 
We have now                    . The basic energy law is thus no longer 

violated when the applied force    (and thus also  ) is corrected with the factor 

   . Furthermore the definition of all physical parameters that are related to the 
indentation force must also not violate the first energy law and require the factor 
   , provided the exponent correction (2 giving    ) has also be performed. 

Importantly, the now deduced universal 5/4/1 ratio (applied/indent/long-range 
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work) for pyramids and cones is valid for all uniform materials, be they elastic, 
plastic, migrating, viscous, sinking in, piling up, and flowing. Particular cases are 
surface effects, gradients, tilted or too tight or edge indentations, pores, micro-
voids, cracks, defective tips’ effects, and most important kink indicating phase 
transformation onset. It is valid for all differently angled smooth pyramids or 
cones with mathematical precision. Any deviations are experimental errors. 
Surface effects include water layers, gradients, oxides, hydroxides, surface 
compaction, tip rounding (sometimes compensating other surface effects), and 
the like. They do not belong to the bulk material and must therefore be eliminated 
from regressions. 

 

 
 

Fig. 3.5. Experimental force displacement curve of aluminum (following the 

physical exponent     on the depth   [9]) and the comparison with the 
linearly applied force line, showing the loss of force (and energy) for the 

indentation depth; the measurement was with a Hysitron Nanoindenter    ; 
the force-corrected parabola would end at the          point 

 
Implementation of the first energy law in instrumented indentation 

 
The energetics of the instrumented depth sensing indentation with pyramids or 

cones has first been published in 2013 [7] for the           relation.     of the 

applied work is lost for the indentation with mathematical precision due to the 
shear-force elastic and plastic work, including sink-in or pile-up. This is universal 
for all different shapes and materials. 
 
As deduced above, the applied force    with the directly proportional otherwise 

physically correct published parameters (including       in [10]) must be 

corrected with the factor     (5/4 ratio,    ) (similarly for         see below). 

Thus, Fig. 3.2 (all with correct exponent    ) corrects now the data from the 

originals in Kaupp       . Considering the now advanced knowledge, this 
includes all the phase-transformation conversion energies       (both correction 

with the factor 5/4). Not affected are the activation energies and the phase-
transformation onsets at characteristic depth, because of cancellation. Also, most 
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of the other mechanical parameters from indentations in the literature including 
ISO-hardness (that does not account for pressure loss) and ISO-modulus are 
affected. The new knowledge that requires a further specification also for the 
hardness and modulus definitions requires separate treatment in the next Section 
below, because these require also the above mentioned dimensional correction. 
 
The tip influence on the  -values (Fig. 3.2) and their conversion between different 

tips has been demonstrated and can be normalized [16]. Creep depends on force 
and temperature. It is a materials property but does not change the exponent on 
  of the loading curve, only the penetration resistance  . Loading times should 

thus not exceed      to avoid such influence. Independent creep measurements 

and corrections must only be performed for most precise rankings of materials. 
But it is usually much less severe than with the viscoelastic PMMA (strongly 
diverging from different authors) and certainly for the PDMS values of Fig. 3.2. 
Indentation times are in fact generally very fast (10-30 s) and Fig. 3.2. 
Indentation times are in fact generally very fast           and creep is mostly 

slow even at high temperatures, so that a rating along the  -values is a good 

choice already without creep corrections. Creep is mostly not corrected for or 
published, while thermal drift can be easily corrected for. Creep has however 
great importance for long-term pressure under heat and for the properties of 
viscoelastic materials with time dependent behavior. Importantly, the exponent 
on   remains     also at indentations of organic crystals with lattice guided 

anisotropic migrations [16,17]. 
 
Basic energy law and dimensional corrections of indentation hardness 

 
A quantitative foundation of conical or pyramidal nanoindentation results as for 
hardness (and modulus) has to obey the first energy law. All world suffers from 

such violation that requires correction. The          relation (3.1) corrects the 
fact that only     of    is used for the indentation with the  -value in accordance 

with the energy law. The correction of  Hphys =k / h
3/2 

(mN/µm
3/2

) (as taken from 

the correct loading curve, where the factor     is included in the  -values (as only 

the penetration is involved), is exhaustive and complies with the first energy law. 

The physical indentation hardness has unavoidably the dimension            or 

            The loading curve provides the easiest, most precise, most rapid 

and cheap way to obtain the correct physical hardness        Importantly, the 

physical hardness       is thus independent of projected area,      , and 

standard material. Only depth, actual material, and indenter geometry are 
essential. It avoids all iterations or fittings or approximations but is experimentally 
obtained by linear regression and it becomes a genuine physical Hphys = k/h

3/2
 

quantity for the first time. It is also not falsified by undetected phase 
transformations, because these would show-up in the linear regression. A sharp 
kink before       must be absent! The applications of       should be very 

welcome. It is nothing else than a normalized penetration resistance. For 
example, the physical hardness values can be directly obtained from the 
examples in Fig. 3.2 by using the corresponding indenters (Berkovich is ISO-
standard). 
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The odd appearing dimension          (also          ) of the physical 

indentation hardness, which does only resemble to a pressure is unavoidable, 
due to the mathematically fixed shear force component of indentations that 
cannot be avoided. Nevertheless, indentation remains a very useful particularly 
precise technique. 
 
Universal hardness, ISO hardness, and FE-simulated hardness would require 

multiplication with     
   

 for dimensional correction and the force correction 

becomes     (Fig. 3.5). However, such corrections of the ISO hardness can only 

be approximate, because the   and thus     iterations with respect to a standard 

material cannot be reverted. Force induced phase-transformations must always 
be excluded with a Kaupp-plot that at the same time obtains the physical 
hardness more safely and directly. 
 
The equations (3.10) and (3.11) show how easy it is to approximately calculate 
      from published       or        values, provided the      values for       

are available, and when phase changes are excluded before       is reached. 

The corrections are multiplications with     
   

 for the correct exponent     and 

factor     for the force loss. However, these formulas were deduced with the 

bona fide used false pseudo cone angle for pyramids, see Chapters 15 and 16. 
They are however valid for real cones with their half opening angles. 
 

                  α   ax
                                                                  (3.10)  

                         
 
  
  

                
  

                                   (3.11) 

 

This is exemplified in Table 3.1 with a numerical example from a published 
indentation onto aluminum, where      and both the FEsimulated        (ANSYS 

software) with exponent 2 on   and the experimental Berkovich loading curves 

are published (falsely claimed exponent 2 but according to the Kaupp-plot 
determined with exponent     on    [18]. Any universal hardness         
treatment would be the same as the one for        The published loading curve 

was also provisionally analyzed as         plot but only used for numerical 
achievement of the conversions. 
 

Entry 1 in Table 3.1 gives the       from the analyzed loading curve (3.11), 

which is certainly the most reliable value. It does not rely on           , any    

or     and it secures the absence of a phase change up to the maximal force. 

And it compares with      and the hardness values that derive from        with 

various stages of correction. 
 
Entry 2 shows that      exhibits a far too high value and an unphysical 

dimension. The energy correction for leaving exponent 2, removing only the 
energy law violation, decreases the value insufficiently, still with the unphysical 

dimension       . A value for      is not available for a final correction. When 
exceptionally a guess was tried that it might be in a        region one would 

guess a further decrease that would look like       with the changed dimension 
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         . This would be in the region of       although with all reservation 

because it is only a free guess only indicating the direction. This show the 
difficulties for the conversion when      for the used       is not reported. It is 

thus much easier to apply the Kaupp-plot to the loading curve (3.1). We 

renounce of including the uncorrected simulated value               . 
 
Entry 3 gives only the exponent correction of          (ANSYS software) that 

was probably obtained by using Young’s modulus   (either known or iterated) 

input, with converging criterion to exponent 2 on h. 
 
Entry 4 gives only the energy correction with a rather high value. Table 3.1 show 
that neither the exponent correction for exponent 2 alone nor the energy 
correction (Fig. 3.3) alone (removing energy law violation) is sufficient. 
 
Entry 5, finally with both exponent correction and then smaller energy correction 

factor for      (Fig. 3.5) provides            , with surprisingly good match (2%) 

with      . The surprisingly close coincidence of       and             supports 

the numerical correctness of the non-fitting (!) straightforward deduction and it 
also reminds the unbeatable precision of the Kaupp-plot’s linear regression (Fig. 
3.2). The close correspondence with             in this case should however be 

tested for generality, because this single example could be fortuitous when 
considering the parameterizations and iteration procedures at    simulations. 

 

Importantly, the striking dilemma of ISO with physics persists with the false 
dimension of too large      and unphysical dimension. All of the values and 

dimensions of the mechanical parameters that depend on it are severely wrong, 
also those that depend on wrong ISO elastic modulus    (see Chapters 4 and 5). 

Clearly, Table 3.1 and Equations (3.10) with (3.11) show preliminary corrections 
of         probably        and with reservation     , provided the      values are 

known. However, despite the straightforward corrections none of them can 
handle the very often occurring and so important phase transformations under 
load (here they were experimentally excluded with Kaupp-plot). 

 

Table 3.1. Comparison and correction of unloading       and   -simulated 

        loading curves of    on        with the physical        , which is in 

accordance with the energy law 
 

Number Technique      
    or     

   
 Hardness calculations and 

corrections 

1 Experimental 
linear regression 

    
   

             
 m3/2 (energy 

corrected      

                                

independent on    and      (no 
phase trans.) 

2 Experimental 

with     factor 
    

                           

              ) (unphysical 
dimension)      not known 

3 FE-simul. 

     
    no 

energy corr. 

    
                    simul-corr   as   univ         
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Number Technique      
    or     

   
 Hardness calculations and 

corrections 

(energy law violation!) 

4 FE-simul.      no 
exponent corr. 

     
                    simul-corr                            

        
         ) (wrong exponent) 

5 FE-simul,    , 

and      
    

     
                    simul-phys                         

    

                  

Note:      Simulated parameters are not italicized;      correction factor    ; the alpha-values 
are biased pseudo-cone angles, see Chapter 16. That means, the false pseudo-cones 

were bona-fide used, even though the cited results were obtained with Berkovich and no 
longer the physical values 

 

3.4 DISCUSSION 
 
The extremely complicated mathematical deductions of Sneddon/ Love       ; 
Fig. 3.1) for the conical or pyramidal indentations did not consider the energetics 
of the process, as illustrated with the Figs. 3.3 and 3.5. And there was no protest 
from physicists. Almost all involved people followed Sneddon [1], Oliver Pharr [3], 
and ISO 14577 all with violating the first energy law for more than half a century. 
The general acceptance for half a century of the implied claim that pressure 
formation and plasticization could be workless achieved is hard to understand. It 
is apparently the result of hype upon the publication [3] that unfortunately was 
believed by ISO/NIST. The simple equations as derived starting in 2000 ([17] and 
before in lectures, and in refused manuscripts) and the point-by-point unraveling 
of the field until now against strong impediments did not help. The newcomers 
had to obey ISO 14577 and many very complex rules, and they used the 
software of the instrument suppliers that had to trust in the ISO/NIST-standards. 
By doing so they forgot to think on the physical foundations. Thus, the basic 
formulas (3.3)-(3.5) and (3.7)-(3.9) that essentially rely on the experimentally 
(since 2000) (Fig. 3.2) and physically founded (since 2015) Equation (3.1) [9] 
found much refusal, various excuses for no experimentally finding exponent 2 
with data-fittings, multi-parameter iterations, and simulations. The actions against 
the elementary algebraic treatment without any fitting/iterating/simulating were 
undue repetitive offenses. Rather acknowledgement had to be expected because 
everything became much easier and quantitative on a sound physical basis with 
simple closed mathematical formulas, proving the universal validity. 
 
Apparently, nobody else (not even textbook or tutorial writers) asked themselves 
why all of the applied normal force with cones or pyramids is claimed to be used 
for the indentation depth, even though the loading curve proceeds not linearly but 
parabolic. The obvious answer is that well-known long range effects and 
pressure formation to the environmental solid material require energy that is lost 
for the indentation depth. When this energy/force/loss was quantified and finally 
(after difficulties with anonymous Reviewers) published in 2013 [7] with the 
universal loss of     for the physical (3.1) and     for unphysical (3.2) equations, 

there was discussion about the validity for comparing applied work and 
indentation work. But these proceed at the same time to the same endpoint     . 

Surprised about the ease of the mathematical deduction and the strict and 
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universal result requiring difficult necessary changes, there were objections and 
much open discussion in plenary lectures from the audience with the guess that 
all of the linearly applied force might instead go along the parabolic curve during 
the experiment. This prevented the opponents from recognizing that the first 
energy law was evidently violated. The linearity of the applied force is however 
also evident, simply from the additional applied force    versus time plot in Fig. 

3.4. 
 
The undue opposition against straight forward physics and algebra is surprising 
even after it was very clear with Kaupp [7] that the ISO system violates the first 
energy law (the present author could not dare to verbally express the energy law 
violation at that time). The offenses have been continuing. For example, the 
opposing manuscript [12] was received at Scanning on May 27, 2014, whereas 
the clarifying manuscript [7] was received at Scanning on October 4, 2012 and 
published on February 25, 2013. The content of Kaupp [7] had thus to be taken 
up again in Kaupp [10] with more details, because the authors, reviewers, and 
editors of Merle [12] continued violating the basic energy law. And the Merle [12] 
continued arguing against the most precise Kaupp-plot that actually was the 
basis for the quantification of the violation. The opponents tried with iterated own 
loading curves of fused quartz. But when doing it correctly, even the invoked 
curve in Troyon [13] would roughly reproduce the well-known transformation 
onset, despite its using a blunt tip that gave an unusually long initial effect. And 
Merle [12] tries again with a false intersection at its microindentation "Kaupp-plot" 
(up to       and        ) where the region with all of the nanoindentation 

details is almost totally obscured in a short unstructured part of it. The false 
intersection with a remote line far away from the plot is useless. But it is used for 
falsely criticizing the Kaupp-plots that never used or use such faulty tricks. When 
properly looking at this linear plot in Reference [12] with a ruler, one recognizes 
an intersection of two straight lines at about       and        , which the 

authors do neither trace nor recognize. Four possibilities exist for this kink very 
close to the plot: either a new highload phase transition of fused quartz occurred, 
or a smoothness defect of the tip was present at this depth, or a remote crack at 
such deep impression was formed, or the impression was too close to an edge/ 
interface/impression. Furthermore, these authors claim and draw a straight single 

line for their unphysical so called "P-    fit with       fit quality". However, 

despite their claimed "three-nines fit", their depicted unphysical "P-    fit" gives 

two roughly linear branches, intersecting in the region of         force (that is 

far away from surface effects). This deviation from the claim is easily 
"overlooked" without a ruler in a wide pencil stroke representation at totally false 
depth-square scaling (better seen when more precisely drawn, the first part 
steeper and cutting at small angle). This shall only be a necessary contradiction 

to the false claim of linearity for a "P-    fit" trying to discredit our simple 
algebraic treatment on a sound physical foundation. Fitted or FE curves, 

converging with   , must not be used for denying thoughtful and repeatable 

physically founded [9] and experimental Equation (3.1). Only untreated 
experimental loading curves are able to detect surface effects, the important 
phase changes, conversion energies, etc., when using the physically founded 
exponent on  .   
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A problem might arise when fitted, iterated or FE-simulated curves and 
experimental loading curves might be mixed up in publications. However, when 

experimental force data are plotted with or fitted to the non-physical   , the 
deviations from a straight line might appear minor for example as in Merle [12]. 

Also a minor endothermic phase change slightly levels the unphysical       
trial-plot with respect to the stronger curved appearance without phase change 
      . Such leveling behavior of the test material fused quartz might have 

strengthened the belief in   , but it reflects the inability to find phase 

transformation with the physically wrong exponent 2 on  . All of the important 

details of nanoindentation are lost with   . But the kink at          
(Berkovich) and initial surface effects of the fused quartz standard are easily 
seen by sharp kinks with the precise Kaupp-plot (3.1) in nanoindentations, 
notwithstanding the cases of later or further phase changes in microindentations 
(e.g.      in        . But there is no excuse for using the unphysical exponent 
and thus denial of the phase transitions if these occur, combined with the 
violation of the first energy law. 
 

The readers of Kaupp [7] and the attendants of the present author’s lectures on 
numerous worldwide conferences were repeatedly urged to think about the 
unexpected and surprisingly easy deduced energetic facts (3.2)-(3.6) and (3.7)-
(3.9) but the expected response of the scientific establishment is still missing. It 
appeared unlikely that all of the scientific Celebrities and their successors 
including textbook authors, ISO/NIST, and numerous anonymous referees have, 
consciously or not, been violating the first energy law for more than 50 years. 
Hesitation to use only the normal force left for the indentation depth was thus 
advisable, before any non-apparent compensation effect for saving the energy 
law was excluded in the desperate situation. Publications of the truth should stay 
as close as possible with the current indentation theory unless all objections are 
removed. Clearly, the believers in exponent 2 on   could for themselves have 

easily performed the deductions as in Equations (3.1)-(3.5) and could have tried 
to change their minds because of this inexcusable energy law violation. But they 
did not try to take into account the always occurring energy loss. Based on their 
believed exponent 2 on   it would have amounted to              of    , due to 

the work and force proportionality, as shown above with the trial Equations (3.2)-
(3.5). And they would have found that the violation is also programmed and used 
in FE-simulations. They refused till now to accept the undeniable wealth of the 
Kaupp-plot and the physical deduction for the correct exponent     on   [9] that 

finally proves energy/force loss of          according to Equations (3.7)-(3.9), 

as only the physical exponent is correct. Since ISO/NIST have been reluctant to 
change their minds, or to announce reconsideration with an alert, there was the 
urgent preliminary publication in Kaupp [10] for expressively naming the 
incredible claim of workless pressure formation and plasticization as "violation of 
the basic first energy law". This is now completed with valid transformation 
formulas for obtaining the physical values and the necessary conditions for that 
from unphysical publications. Furthermore, the most easy and precise       

deter-mination by linear regression of the loading curve (3.1) (hitherto strongly 
refuted Kaupp plot) with energy-based correction is now again strongly 
advocated for. 
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3.5 CONCLUSIONS 
 
The still not settled dilemma between ISO and physics with respect to ISO 14577 
(not even an alert has been filed yet) is unbearable due to its enormous risks for 
science and daily life’s safety. It appears unbelievable and even desperate that 
the first energy law was drastically violated for more than 50 years and none of 
the physicists protested against such habit. Everything is easily deduced with first 
grade algebra, avoiding fittings, iterations, simulations, and approximations, 
making everything much easier. Hardness is now obtainable by linear regression, 
no longer by iterations, fittings, approximations, and simulations that are not 
ready for a controlling assessment. The physical indentation hardness 

                is now for the first time a genuine physical quantity, obeying 

Equation (3.1) and the first energy law. The same is true for the indentation 

modulus Er-phys
 (d1.25 FN

 /dh) /A.  We note: in the original published paper was 

bona fide for Er-phys the false biased angle  for the pseudo-cone used, but see 

Chapters 15,16. The complete, more precise deduction than in Chapter 5 reveals 
also the simple conversion from       . Only the quantitative indentation on the 

physical basis reveals numerous otherwise impossible applications. Examples 

are phase change         , conversion energies        and activation energies 
[19] of materials, all on the basis of the so-called Kaupp-plot [7,9] that also 
checks for correctly performed indentations and provides extrapolation facility up 
to recognized phase change qualities under pressure. Furthermore, it reveals a 
large number of special materials’ properties and indentation errors that are 
named above. But it is still being heavily suppressed by the ignoring 
establishment, including ISO and some anonymous Reviewers with incredible 
unqualified wording instead of acknowledging this wealth. 
 
The liability with unphysical calculated materials’ properties is totally unclear at 
the present dilemma between ISO and physics, because all safety engineers are 
falsely trained. That means, the issue counts for every day’s safety unless ISO 
files at least an urgent alert. Everybody knows how many materials fail shortly 
after the warranty period, certainly not purposeful but often with falsely calculated 
materials. Even worse, falsely calculated components like poorly adjusted 
medicinal implants or larger scale composites can produce disasters. There is 
good reason why passenger traffic airplanes require frequent safety checks and 

complete replacement of all parts within 2 years. For example,   goes with   
   

 

not with   
   

    with all implications for fatigue, and wear, to name a few. 

 
Despite the highly comprehensive results of this paper and numerous worldwide 
lectures on conferences the ISO versus physics dilemma still remains. The 
physical indentation       and        dimensions that only resemble pressures is 

perhaps difficult to understand at first glance. But it is real and the reasons have 
been discussed. Importantly this does not detract from indentation as a very 
precise and reproducible technique, when properly executed, checked, and 
algebraic evaluated, that means without fittings, iterations, and simulations. 
Rather the unavoidable dimensional changes have an enormous bearing for 
science and practice. The not fitted and not iterated physical quantities must be 
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used to redefine the numerous further mechanical parameters that were deduced 
from unphysical      or       . Further studies are necessary and further 

important insights are to be expected when the violation of the first and most 
basic energy law will be removed also for the deduced parameters. This should 
help for a better understanding and open new horizons. Also textbooks must be 
rewritten for the sake of physics, compatible materials sciences, and new 
insights. Since there was the violation of the first energy law, the new results will 
prove to be more compatible with all related techniques that do not violate 
physical laws, which is very desirable. The quantitative indentation at the now 
physical basis has the indispensable advantages of being precise, and in accord 
with basic principles. This is promising and cannot be denied. The further 
advancement on the physical basis is a very urgent task that must be pursued, 
hopefully soon also with ISO/NIST against all of the incredible resistance, 
because violating the first energy law is an inexcusable fault. 
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ABSTRACT 

 
The depth-sensing nano, micro, and macro instrumental hardness technique, 
which provides several additional mechanical parameters when using the proper 
force/depth curves exponent 3/2 on the depth of the loading curves, is compared 
to the physics of industrial single-point force indentation hardness measurements 
(Vickers, Knoop, Brinell, Rockwell, Shore, Leeb, and others). The equipment 
software usually calculates and displays most of the different types of macro 
hardness but not of the pristine material in favor of polymorphs due to mostly 
several consecutive phase transitions, to be only found by depth sensing 
indentations.  The ISO or ASTM standards do also not take into account the 
temperature dependent activation energy and phase change onset with phase-
transition energy, which is vital information for applications of all sorts of solids. 
Only the latter reveal these, when not using the disproved exponent 2 on the 
depth h for the analysis. Furthermore, the high-load one-point approaches miss 
the inevitable stronger and more varied subsequent phase-transformations, 
leading to inaccurate interpretations of the properties of pristine materials. 
Examples are provided for the conversion of iterated ISO-hardness and finite 
element simulated hardness to physical hardness. The one-point procedures are 
still crucial for industry, but to ensure the accuracy of their conclusions, physical 
hardness and phase transition onset sequence detection must be added. That 
requires depth-sensing indentations and correct loading curve analysis. 
Multidirectional indentation moduli mix of (mostly) anisotropic materials without 
high-force depth-sensing equipment produce only faked Young’s moduli. For 
Young's moduli one needs tension, compression, or ultrasound techniques. Only 
these give reliable Young’s moduli for the multitude of mechanical parameters 
derived from them. Also, the iterated ISO indentation moduli must no longer be 
used for there-from calculated faked mechanical parameters. 
 
Keywords: Brinell hardness; elastic modulus; force-depth curves; Hook’s law; 

ISO and ASTM standards; macroindentation; physical hardness and 
modulus; rockwell hardness; ultrasound; vickers hardness, young’s 
modulus. 

 

4.1 INTRODUCTION 
 

Although instrumented macro-indentation is also an option up to 80 N, the 
current depth-sensing indentation hardness and modulus determination is 
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obtained by nano- and occasionally micro-indentation (nN to μN and mN). 
Vickers (HV), Knoop (HK), Brinell (HB), Rockwell (HR), Shore, rebound LH 
(Leeb), or other specific macro-hardness tests are still the focus of industrial non-
depth sensing techniques. Although they have subsets for particular types of 
materials, these measure the impression diagonal, or diameters, or final depths 
under predetermined conditions. One subset of    is the UCI technique 

(ultrasonic contact impedance, requiring elastic modulus     ) measuring 

vibration damping of a swinging stick with a Vickers diamond at the end, as 
inserted at a predefined load. All these single-point high-force techniques require 
1:1-calibration with test plates of closely related materials of "known" hardness, 
also for canceling out not specified tip end radii. Several hand-hold devices exist, 
which is practical in the steel industry. Handhold equipment includes UCI, Leeb, 
Rockwell clamp, Brinell clamp, Brinell Poldi hammer, etc. All of these techniques 
use rather empirical definition and ISO (International Standard Organization) or 
the now compelling ASTM (American Society for Testing and Materials) 
standards. Between HV, HK (low load range), HB, HRB, and HRC exist 
approximate conversion equations. This indicates relationships between them. 
The equipment software usually calculates and displays most of the different 
types of macro hardness. However, conversion between them is often not 
precise enough for construction purposes, notwithstanding the sometimes large 
experimental uncertainties, due notwithstanding the sometimes large 
experimental uncertainties, due to often low reproducibility between different user 
sites. And there is serious non-compliance with basic physics. 
 
The comparison with depth-sensing instrumented indentation according to ISO 
14577 where three major flaws occur in the universal, ISO, and finite element 
(FE) simulated hardness, is difficult. The instrumented depth-sensing could 
recently be corrected for providing the physical hardness, eqn. (4.1) (where   is 

the slope) of the14577 [1-3]. The energy law is not violated because the k-value 
refers only to the penetration. 
 

Hphys = k = FN/h
3/2

 (mN/µm
3/2

)                                                                 (4.1) 
 
FN = k h

3/2
                                                                                               (4.2) 

 
Corresponding violations of physical laws have not yet been considered in the 
single-point-load techniques, but these must equally exist. This bears an 
important risk for the mechanics quality of industrial goods. A prevailing source of 
uncertainty is the non-considered phase transformation of materials that change 
the material’s hardness and other mechanical properties, under the very large 

local pressure. It is well-known       that phase changes occur already at 
nanoindentation and lower micro-indentation. They must therefore be even more 
common in the macro range. Furthermore, the possibilities for detection of 
hidden horizontal cracks (except when these occur upon unloading) are not 
evident. All of the industrial indentation techniques also penetrate vertically onto 
flat surfaces, but now with a defined holding time at the predetermined force. 
Creep is assumed to be negligible. Some of these macro-techniques (HV, HK, 
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HB) measure diagonals or diameters of the impressions that is left at the surface, 
others (HR, Shore) the indentation depth. But final depths can also be calculated 
from the indenter geometries in the former cases. The physical flaws as detected 
in the instrumented depth-sensing should be the same in all macro-hardness 
tests. Clearly, the depth relates to the diagonal or diameter left at the surface. So 
there is no principal difference to more precise depth sensing, except that the 
applied forces are usually very much higher. Very detailed and constantly refined 
ISO and ASTM standards are available. A comparison between these and the 
depth-sensing techniques is thus in urgent order, by applying the physical news 
from the nano- and micro-indentations [3]. The readers may be interested in 
certain updates in this topic that are available elsewhere [4-6]. 
 
Similar difficulties with elastic moduli concern only the depth sensing unloading. 
The same dimensional energetic and phase change violations of ISO standards 
can be hardly corrected. However, it turns out, there is not the claimed 
correspondence of ISO or physical indentation moduli with Hook’s Young’s 
moduli, so that      should no longer be iterated (Oliver-Pharr method), falsely 

called "Young’s" modulus, and used. Even       is only a counterpart of       

the physical hardness. It will however be suggested to use bulk moduli instead. 
 

4.2 MATERIALS AND METHODS 
 
The nanoindentations onto a polished optical disc      thick      single crystal 

(purchased from Alpha Aesar GmbH Co KG, Karlsruhe, Germany) were 

performed at a Triboindenter     with AFM of Hysitron Inc, Minneapolis, USA, with 
proper calibration at 23, 100,300, and       (average of eight measurements). 

The author’s nanoindentations used a fully calibrated Hysitron Inc. Triboscope 

     instrument with AFM in force-controlled mode also with a Berkovich diamond 

          . The cited literature data have been carefully searched and 

interpreted in view of the generally deduced physical laws, in accordance with 
validated experimental data. Phase changes under load are detected by kink-
type discontinuity [7] in so-called "Kaupp-plots" according to eqn. (4.2) [1-3,7,8]. 
The precise intersection point is obtained by equating the regression lines before 
and after the onset of the phase change. The regression coefficients are 

calculated with all 400-500 ottr 3000 original data point pairs using         , but 
excluding those from initial surface effects. Digitizing 50-70 almost uniformly 
arranged data pairs were obtained from published loading curves with the aid of 
the Plot Digitizer 2.5.1 program (www.Softpedia. com). The distinction of 
experimental from FE-simulated loading curves succeeded with the "Kaupp-plot". 

The use of k tells that we comply with the energy law. 
 

4.3 RESULTS 
 

Dilemma between ISO Standards and Physics 
 

The comparison of depth-sensing instrumented ISO-hardness with non-depth-
sensing single point high-load techniques reveals undeniable physical 
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similarities. The industrially used macro indentation techniques are governed by 
the same physical laws as depth-sensing nano to macro indentations. 
Unfortunately, present ISO standards are at variance with the corresponding 
physical laws [1-3] and the possible corrections of previously published 
indentation data require a detailed discussion here. The physical requirements 
for singlepoint load indentations reveal equally from the precisely determined 
facts of the better controlled depth-sensing continuous indentations, including the 
macro-indentation ones. 
 
Table  4.1  compares  the  depth-sensing  hardness  values  of               ,  and 

          , to demonstrate the importance of correct depth-sensing evaluation. It 

is  also  shown  how  the  latter  two  can  be  corrected,  provided  that  the  loading 
curves were published as for example in ref. [9]. This is a practical application for 
the conversions of FE-simulated or ISO hardness values (energy law violations 
and incorrect exponents) into physical hardness. 
 
Entry  1  shows  the  correct  value       according  to  the  Kaupp-plot  with  linear 

regression from the experimental loading curve in ref. [9]. 
 
Entry  2  deals  with  the  published  iterated      value  that  enormously  differs  in 

value  and  dimension.  The  difference  is  still  very  large  when  the  energetic  law 
violation is removed (based on the falsely believed "h

2
" the energy or force loss 

for the indention calculates to        energy law violation) (cf. refs.       . This 
is  incomplete  correction.  It  is  not  clear,  which      pair  was  used  in  the      

iteration.  Complete  correction  would  also  suffer  from  the  exhaustive  iterations 
that cannot be reverted. 
 
Entry 3 deals with the FE-simulated hardness without the necessary corrections: 
again, a large deviation in value and dimension from      . 

 

Entry 4 demonstrates only the dimensional correction, as hmax
2   

The use of k tells  
that h

max
2 was used instead of    x

   
 for the relation with     , but it is clearly    

not sufficient. 
 

Entry  5  similarly  reveals  that  only  the  removal  of  the  energy  law  violation  (for 

believed    only     of    is available) is not sufficient. 
 

Entry  6  shows  that  only  both  corrections        and  thereafter       give  a  good 

value. But it has to be checked if all FE-simulations with different iterations will 
give equally good correspondence with the correct experimental       value. All 

of  the  corrections  in  Table  4.1  are  equally  valid  for  the  one-point  non-depth-
sensing macro techniques. However, there is another very important flaw: phase 
changes under load. Their occurrence and onset load can only be detected by 
depthsensing indentation and Kaupp-plot. 
 

As  hardness  is  for  the  first  time  a  physical  quantity,  there  is  no  possibility  to 
change  the  physical  hardness  dimension.  The  inherent  dimension  has  its 
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meaning for all applications of the  -value (force/depth
3/2

  mN/µm
3/2

) that cannot 

be dismissed. These include depth-force relation (mar, wear, tribology), physical 
deduction with elementary mathematic, adhesion work, pull-off curves, safe 
ratings of materials, correlation coefficients with    nines or less noisy with    

nines, quantitative far-reaching energy, phase transition onset, indentation work, 
compatibilities, transformation energies, activation energies, creep, size effects, 
maximal load for reasonable unloading curves, initial surface effects, high 
sensitivity by linear unloading curves, initial surface effects, high sensitivity by 
linear regression, tip normalization, tip rounding effects, materials gradients, 
inhomogeneous materials, geodes, crystal defects, edge interface, too close 
impressions, grain boundaries, cracks, alternating, improvement of FE-
simulations, avoidance of polynomial iterations or varying broken exponents, 
correct visco-elastic-plastic parameters, nanopores, micro-voids, alternating 
layers, blunted tip effects, correction of false mechanical parameters that rely on 

  , elementary mathematics instead of iterative fitting, avoiding violation of the 

basic energy law with factor    , failure risks with false mechanical parameters, 

tilted impressions, faulty standards with phase change, all types of solid materials 
and plasticization types [1-3, 7,8,11], quantitative sound mathematical basis, 
universal validity, distinction of   -simulated from experimental loading curves, 

no denial of phase changes, and daily risk with unphysical mechanic parameters 
[3]. 
 
Macroscopic depth-sensing, hardness and phase transitions 

 
Depth-sensing nanoindentation extends up to      load, microindentations up 

to    , mostly with Berkovich indenter. Extensions to macro- indentations have 

been achieved with Vickers up to      for soda-lime glass [10], but rarely 

repeated. Eqn. (2) has been experimentally secured and physically deduced. It 
secures (see Figs. 4.1, 4.2, and Chapter 6 for the phase-transitions upon depth-

sensing) the Kaupp plots for all of the force ranges      . The dilemma of physics 

and ISO 14577, still believing in "    , is clearly evident from Fig. 4.1. It indicates 

exclusion of    and phase transitions of soda-lime-glass, sapphire, and sodium 
chloride in the macro-indentation range (the nano-ranges are "hidden" at these 
macro-indentation ranges). The kink-type discontinuities (the phase transition 
onsets) are at            , and         load, respectively. 

 
The most important advantage of macro-depth-sensing is the detection of 
secondary phase transitions at very large forces. In the case of     , the also 

endothermic fcc to bcc transition at             is hidden at that scale. The 
same is true for a transition onset of sapphire at        load and for soda-lime-

glass at        [8]. The other macroindentation techniques have the 

disadvantage that they cannot detect phase transition onsets: they practically 
always measure the hardness from (often secondarily) phase transformed 
materials, as embedded in the original material. They do not characterize the 
pristine materials! Clearly, one needs nano, micro and macro depth-sensing 
indentation in addition to the technical ones, for judging the materials mechanics. 
Most of the time, materials are not under such very high pressure. Also, the 
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primary transition onset is important for material’s mechanics (e.g. failure or 
fatigue). 

 
Table 4.1. Comparison and correction of Hphys, HISO, and FE-simulated Hsimul 

loading curves of Al [9] including the corrections in accordance with the 
exponential and energy laws; extended table from ref. [3] 

 
Entry Technique      

  k or         
   

  Hardness calculations and 
corrections 

1 Experimental curve 
linear regression 

    
   

  k = 5.9540 
mN/µm

3/2
 

(energy-
corrected)

b
 

 

Hphys = k /tan = 
0.24295(mN/µm

3/2
) 

(c)
; 

independent on    and      
(no phase trans.) 

2 Iterated  Iso  with 

    factor 

     
  --                       

              (still 

unphysical dimension,      
unknown) 

3 FE-simulated not 
corrected 

     
               

    
            

 simul  (as   univ   

               
4 FE-simul.     

   
 no 

energetic corr. 

     
               

    
            

 simul  (as   univ   

             hmax
3/2 

= 

                 (still 
energy law violation!) 

5 FE-simul. 2/3; no 
exponent corr. 

     
   ma           

 
 simul-corr             

               (wrong 
exponent) 

6 FE-simul.     
   

 and 
energetic 
corr. 

     
               

    
            

 simul-phys             

                  

(a) simulated parameters are not italicized; (b)energy correction factor    ; (c) this value 
has been calculated with the false pseudo-cone formula (see Chapter 16) 

 

The comparison of hardness measurements of sodium chloride is particularly 
revealing, because (as in the case of sapphire and soda-lime-glass) consecutive 
phase transitions are involved. The literature knows Vickers microhardness data 
from the list for      properties of the MaTecK-Material-Technologie and Kristalle 

     collection (Jülich, Germany), reporting 0.20 GPa. Probably, this is the 

same value as cited [10], but           is not known.                     
was recently measured at          , but that is uncorrected after its fcc-bcc 

phase transition (from the loading data for ref. [11]). After energy and exponent 
correction before the phase transition onset this gives with          the       

value of                           (not violating the energy law etc.), as 

calculated with eqn. (4.1) [3].       is only obtained by linear regression of 

original data pairs without any of the iterations for     . The nanoindentation up 

to      load (sharp Berkovich,        depth at      force) creates the halite 

to cesium chloride type phase transition (fcc to bcc) with onset at          and 

        load. It requires               phase transition work [11]. Ref. [11] 

reports also the activation energy      to         of this first transition. The 
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preferred hydrostatic transition pressure is known as         [12]. The calculated 

second phase transition (bcc to layered    -type      space group      ) is 

hydrostatically expected at       , metallic from           . Most probably, the 

second transition corresponds with the kink in the Kaupp-plot at        load and 
       depth [11] according to the loading curve of ref. [10]. The transition work 

is            , which is very large when compared to          for fcc to bcc of 

    , or for example           for       , or               for           . 
The discontinuity at               of a sharp Vickers is a candidate for the 

predicted      phase of     . 
 

 
 

Fig. 4.1. Kaupp-plot (FN versus h
3/2

) of published depth-sensing macro-
indentations [8] showing kink-point intersections (phase transformation 

onsets) and linearity up to 80 N load; an "h
2
 relation" as believed in ref. [10] 

is excluded; the data have been extracted from ref. [10]; the correlation 
coefficients for all six regression lines are r>0.999 

 
Vickers hardness test and other one-point-load macrohardness tests 

 
The load for    varies in three ranges from       up to        (HBW10/3000 

even with        ; the   indicates tungsten-carbide); the normal range is 

         (HV4 - HV98). The Vickers hardness test is most similar to the 

pyramidal instrumental depth-sensing, as the Vickers indenter can be used in 
both techniques. One indents to the chosen load, holds for 10-15 s (now      ), 
unloads, and calculates HV from the average of the diagonals   of the 

impression. The standard is given by eqn. (4.3), where    is in kpf (kilopond 

force, it is a very old standard) and   the diagonal length in    of the residual 

impression. Then, after conversion to       units one reports       , where   
is the hardness value and   the vertical load    in    . 
  

                                                                                                 (4.3) 
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The first flaw deals with the dimensional error. Since the depth   is geometrically 

related with HV’s impression diagonal   according to eqn. (4.4), the    relates 

again with    rather than with     . This gives again a faulty inherent          

relation (instead of the physically deduced eqn. (4.2)), as in the instrumented 
depth-sensing force-depth curve      . 
 

                                                                                     (4.4) 

 
Next to the dimensional violation there is the second flaw: violation of the basic 
energy law. The applied load is not only used for the indentation depth but with 

    force and thus energy loss (physically correct      ): the sum of stress 

formation and plasticization, including sink-in or pile-up, requires energy (if 

correction of    to      is not performed, the energy loss would be     )      . 
Long-range features, often with pile-up around the square impressions, have 
long been seen. Their universally quantitative occurrence in addition to been 
seen. Their universally quantitative occurrence in addition to the created stress 

           
  ) derives from the physically deduced ratio of the different work 

contributions in eqn. (4.5) [1]. Clearly, the nonconsideration of pressurizing and 
plasticization work is violation of the most basic energy law! The same is true 
with HB, HR, Shore, rebound, and the techniques that use spherical impression 
instead of pyramidal/ conical ones, because these must also obey the physical 

relation of eqn. (4.2) (      instead of      as quantitatively deduced for depth-

sensing indentation. Also the UCI-Vickers hardness values, using ultrasound 
frequency, suffer from the same flaws. 
 

                                                                                       (4.5) 

 
The third flaw is even more severe than in depth-sensing indentation, because 
the forces/works and depths are much larger (compare the     , sapphire, and 

soda-lime-glass cases in Fig. 4.1. Inevitably, there must be several endothermic 
or exothermic phase changes following each other, not to speak of hidden 
horizontal cracks that can also occur upon pressure release at the unloading. 
Furthermore, one-point measurements (rather than linear regression of loading 
curves with Kaupp-plot) bare the risk of uncontrolled errors. This fact makes it 
difficult to judge the reliability of    etc. measurements that could be 

approximately corrected for energy law and dimension (requiring depth with tip 
rounding correction), but not with respect to force dependent phase 
transformations under pressure, the detection of which require analyzed 
force/depth curves with the physically founded exponent     on the depth 

(eqn.4.2) [2,8]. 
 
The interpretation difficulties are demonstrated for    measurements with the 

test material 316L stainless steel. The general claim is that    values must not 

depend on the load. A publication of 2016 gives a value of                    
at         load [14]. The rounding of the Vickers pyramid is not given (its 

influence is eliminated by comparison with test-plates impressions), but we 
calculate for ideal Vickers a depth of       . Another publication of 2016 reports 
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               at         load [15] at a calculated depth of        . 
Important questions are: why is the value for the much deeper and 30 times 
higher force smaller by         ? Could it be experimental error (this is 

calibration at a test material!), or was the tip rounding too different, or are there 
undetected cracks, or are consecutive phase transitions at the 30 times higher 
force exothermic? Such considerations are missing, but the        value was 

also converted into      ; 95 HRBmax, and 89 HRB. Numerous calibration 
tables exist and equipment software often displays such converted results as 
well. The most important of the conversion formulas that interconnect the various 
techniques are listed in Table      Such conversions are termed "approximate" 

(conversion norm:       of HV), but their use indicates their correlation. That 

means: all of the single-point macro-indentations exhibit the same flaws with 
respect to physics, notwithstanding the apparent technical problems. Clearly, 
size effects due to phase changes are assumed to stay within the large error 
allowance, and the end radii of the Vickers and Knoop pyramids are not taken 
particular care of. Apparently, Table 4.2 is only valid for the same force, and 
these techniques are by no means universal, but they need for every material a 
separate test sample with "known" HV that must have been agreed upon. The 
phase change events are not considered and neither can they be detected by the 
    calibration, even though the forces vary from     to        . Conversely, 

depth-sensing is universally applicable to all solid materials but requires 
knowledge of the tip rounding that should be small enough, so that its influence 
can be treated and corrected for as initial effect. ISO uses iterative relation to a 
standard like fused quartz or aluminum. However, the physically founded depth-

sensing obtains absolute hardness values without test samples      , and it 
detects phase transitions directly as in Fig. 4.1 and [8]. 
 

Table 4.2. Some conversion formulas for one-point-load hardness values 

 

HV to HB            
       HV  H   low load region) 

H  to HV H      HV  

H   to HB H            H    
  

H   to HV H            HV   
  

 
These considerations clearly indicate the close relation of the empirical single-
point load macro-techniques that use either surface (HV, HK, HB) or depth 
measurements (HR, Shore, etc.) to the instrumental nano- and micro- and 
macro-indentations. Thus the same flaws, as in the ISO standards or FE-
simulations, as based on the Oliver-Pharr technique, are involved: first the 
violation of the basic energy law, second the wrong dimensional error (violation 
of the Equation 4.2), and third the non-consideration of phase transformations 
that cannot be detected during the load and hold periods. The high load 
capabilities of depth sensing should be extended above     . Clearly, depth-

sensing measurements should always be separately available for every 
material’s charge in addition to the fast HV, H , etc. measurements for rapid and 
on-site production control, in order to avoid risks from unrespected phase change 
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onsets giving polymorphs with different mechanical properties. And the study of 
crack onsets is important. 
 
Tension, compression and speed of ultrasound for Young’s modulus   

 
Elastic moduli cannot be obtained by one-point-load hardness tests, but ISO 
iterates it with depth-sensing unloading. The transformation of        into false 

"Young’s"      from exhaustively iterated unloading curves is achieved with eqn. 

(4.6), where both the Poisson’s ratio and modulus of the material and the 
indenter (diamond) occur. This gives values with unchanged dimension but still 
burdened with the violating of physical laws by the three major physical flaws 
(dimensional, energetics, unclear solid phase). ISO calls such   values from 

unloading curves "Young’s" moduli. 
 
There may however be severe objections against equating indentation moduli 
     with Hook’s Young’s moduli. This holds also for the indentation         

(Chapter 5) and with eqn. (4.6)       (the pendant to       ) [3] with different 

dimension             [10]. 

 

                   
                                                                (4.6) 

 
It does not help that the UCI-Vickers hardness test uses ultrasound response, 
which requires an effective elastic modulus      from calibration tables for 

consideration of the E-module. UCI is not a technique for modulus measurement. 
The reason for eqn. (4.7) is the universal eqns. (4.2) and (4.5) for indentations, 
which means long-range work for pressurizing and plasticization consumes     

of the applied work, and thus force, in case of correct dimension according to 
eqn. (4.2) (or     as long as the false exponent 2 on   would be applied). But 

the use of       requires some efforts with the calculation of the initial slope of 

the unloading curve using the original data, rather than a ruler to the recorded 
curve. 

 
      Er-phys= (d1.25F /dh) /A                                                                           (4.7) 

 
In the absence of original data, it can appear impossible to graphically approach 
the initial slope             that is the iteration result by Oliver-Pharr. It claimed 

     value of       (Berkovich,         ) from ref. [9] up to          followed 

by creep up to 266    depth. Actually, ISO iterates   (projected contact area) 

with an unrelated standard for final height                 for   and fits     

or     of the exponential unloading curve iteratively with                  
 , 

where         , and exponent   (between 1 and 3  are the free parameters. 
Stiffness   at peak load is then obtained by the differentiation          

                
      for obtaining the maximal slope. This circumvents the 

slope detection.       is then calculated as           
   

 and the result is called 

"Young’s modulus" after application of eqn. (4.6). This is objectionable ISO 
standard. 
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The principal problem with such definition of an indentation modulus is the 
anisotropy of most materials that cannot be tackled by indentation, irrespective of 
the possible physical corrections eqn. (4.7). For example, it is known from the 
fact that different faces of a crystal give different Er-ISO moduli depending on the 

different predominance of the crystal faces towards the tip (e.g.        varies 

       between       and          onto 5 different faces) [16]. The skew 
indenter surfaces collect in fact a mixture of some sort of different elastic moduli 
from all of the different directions around the tip and there are also shear-moduli 
involved upon the unloading. This is far away from unidirectional Young’s 
modulus, depending on Hook’s law eqns. (4.8) and (4.9). Thus,      is 

incompatible with Hook’s law, and indentation-       can also not be made 

compatible. Any similarities of      values with Young’s moduli are thus 

fortuitous. They derive from the iterative fitting to the unidirectional Hook’s value 
of a standard. They are therefore fortuitous, because of both the multi-
directionality and because of the striking physical errors of     . They do not 

have the same meaning, as might be suggested by the unfortunate common 
wording. Fortunately, an extensive amount of well-studied Hook’s Young’s moduli 
for all independent directions of preferably cubic and other high symmetry 
crystals are tabulated and do not need repetition by indentation. The complexity 
of the 6x6-matri  treatment of Young’s moduli, leading by some matri  symmetry 
to generally 21 independent elastic constants that are further reduced by crystal-
symmetry to       and in the cubic case 3 independent moduli has been amply 

described (for example in ref. [17]). So, it is suggested to call       eqns. (4.6) 

and (4.7) "indentation modulus" and check, whether the three-dimensional bulk 
modulus, as obtainable from hydrostatic pressurizing, is an equa or superior 
parameter for characterizing the elastic properties of micro or macro materials. 
 
It is essential now to briefly repeat the Hook’s technique for obtaining Young’s 
moduli E, where the shear modulus detection is excluded. The clearest 
experimental determinations of   are by tension compression eqn. (4.8) or 

ultrasound speed eqn. (4.9). The uniaxial tension or compression gives the 
simple elongation/depression Hook’s law eqn. (4.8), as long as these are fully 
reversible. Transversal thinning/ thickening is always mentioned, but transversal 
work can apparently be neglected.   is length,   is the generated pressure (force 

per area),   Young’s modulus. 

 
                                                                                                    (4.8) 

 
Eqn. (4.9) recalls the ultrasound speed technique in long rods with diameters 
smaller than the ultrasound-wavelength, excluding shearwaves, where frictional 
loss may be small or ineffective. It is used for the longitudinal speed    in such 

rods, where   is Young’s modulus and   is density. These and more complicated 

Hook’s techniques are generally accepted te tbook physics. 
 

                                                                                                    (4.9) 

 
For practical reasons we regret that the Hook’s law techniques require much 
larger test samples with highly specialized geometric shape. They are therefore 
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more difficult to perform and less versatile than would be indentations, that 
appear however inappropriate for  . The present situation is at best exemplified 

with the simplest case, cubic isotropic aluminium. 
 
We have to distinguish tabulated Young’s modulus          , shear modulus 

            and bulk modulus at hydrostatic compression          . This 

compares to claimed invalid         GPa [9] that must be decreased to 

        by making the physical corrections. Clearly, nothing from the unloading 

is fitting with the reliable Hook’s values. There is no hope left that indent- 

                  values could be converted into Hook-               values 

(for example by division with     
    ), because they would have totally different 

meaning. Again, it does not help that      is iteratively fitted with respect to a 

unidirectional Hooks’s Youngs modulus of a test material. 
 
The consequences for the recent use of physically unsound      values are 

detrimental, when their use for mechanical parameters is considered. The 
particular importance of an indentation modulus is evident from numerous 
applications. The listing 1 through 12 indicates various examples. 
 
1. All elastic properties 
2. Input for FE-simulations 
3. Stress-strain response 
4. Film hardness and film adhesive strength 
5. Strain hardening 
6. Creep calculation 
7. Material fatigue, fatigue strength 
8. Adhesion calculation (DMT or JKR) 
9. Viscoelasticity studies 
10. Sliding friction coefficient 
11. Contact area at dynamic testing in continuous stiffness mode 
12. Fracture toughness 
 
At present it appears only possible to calculate Young’s modulus   of new 

materials for certain directions and test the quality of such calculations with as 
close as possible materials, for which the Hook’s values are known, or to rely on 

indentation-       or on bulk modulus   by hydrostatic pressure experiments for 

the consideration of reliable elastic materials properties. 
 
Reasons for obeying physical laws 

 
It is very clear that mechanical properties must not violate basic physics, be it in 
academia, industry, medicine, or daily life. That does not mean that purely 
empiric methods like the Mohs hardness scale (who scratches whom) are also 
useful. However unphysical parameters must not violate physics. And one must 
not try to make physical correlations with unphysical parameters. For example, 
Mohs says steel cuts leather. However, there is also mechanochemistry that 
explains why barbers can sharpen their blades with leather [18]. Clearly, also the 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Industrial High-load One-point Hardness and Depth Sensing Modulus 

 
 

 

 
52 

 

size of the components and the chemical composition of the solids play an 
important role (here polymers are tribomaterials) [18]. Brittleness, ductility, 
lubrication are further qualities apart from hardness and elasticity, that have their 
meaning in particular applications. Hardness and elastic moduli should be 
physical rather than empirical due to countless technical constructions where 
different materials must work together and alloys or composites must be 
compatible rather than fail upon short use. Materials are often used under low 
pressure where they are not phase-transformed. And different materials have 
their phase change onsets at varied pressures. This provides severe risks when 
they are perhaps only compatible under very high pressure as high pressure 
polymorphs, but not at lower or ambient pressure where they are at rest. 
Everyone knows that virtually all purchased goods with granted guarantee 
periods fail (shortly) after that period, or airliners must have very short control 
and replacement terms of all parts, because they must not fail. Only physically 
sound parameters of hardness and modulus with all of the numerous other 
mechanical parameters that depend on them should be used, instead of violating 
basic physical laws with      and     . The dilemma of ISO-standards against 
physics is a thread for daily life, because falsely calculated materials bear 
enormous risks for lifetime and failure. Some examples are composite materials 
(also solders) that may not properly fit together, or exploding turbines, or 
breaking windmill blades, or micro-cracks in airplanes and huge pressure vessels 
of power plants, or breaking medicinal bone implants due to incompatibility, etc. 
 

4.4 CONCLUSION 
 
The comparison of single-point load macro-indentations with physical and 
mathematical precisely handled depth-sensing nano, micro, and macro 
indentations reveals three major flaws of the former that can be and have been 
removed for the latter [3]. All depends on the physically deduced exponential law 

       , instead of the believed    from Sneddon, Oliver-Pharr, and ISO 

standards [3]. The same flaws (violation of the basic energy law, dimensional 
error against physics and disregard of phase changes under load) are also 
inherent in present ISO and ASTM standards that still do not apply basic physics 
from the depth-sensing techniques. Since the one-point force techniques are 
much more rapid and comfortable in industry, these purely empiric techniques 
with standardized calibration necessities at test plates and tables for different 
material types are now only acceptable, when the materials in question have also 
been studied on the genuine physical basis with force/depth curves, as described 
here and in ref. [3]. Depthsensing ISO-standards are subject to urgent changes 
for complying with physics. Most serious in view of failure risks are the present 
disregard of phase transition (phase change) onsets, and size depending very 

large differences between faulty      and the much more precise       values 

with different dimensions. Similarly, indentation elastic modulus      (falsely 

called "Young’s modulus") fails: it suffers from the same physical flaws and has 
no relation to unidirectional Hook’s law. The unloading skew pyramid or cone 
surfaces collect a mixture of multidirectional elastic moduli and shear moduli. 
Therefore, indentation-moduli have a totally different meaning than Hook’s 
Young’s modulus. They cannot be given the same name, and the term      is 
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also worthless due to three physical flaws, and to questionable iterating fitting 
techniques as initiated by Oliver-Pharr and taken up by ISO. The incredible claim 
that ISO would deal with unidirectional Young’s modulus has to be rejected. It is 
not at all available for indentation unloading.      and deductions there from are 

unphysical and their use must be discontinued. The use of indentation-       or 

bulk moduli   should be used in situations where the one or the other appears 

more appropriate or better both for the mechanical characterization of materials. 
Phase changes under pressure must be controlled as detected from the 
mathematical analysis of instrumented loading curves, so that the rapid single 
point high-load indentations can find the appropriate interpretation. 
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ABSTRACT 
 
This chapter questions the ISO standard 14577, which calculates the elastic 
indentation modulus by breaking the first energy law and ignoring easily 
detectable phase change onsets and initial surface effects under load. It is 
necessary to cancel and stop the double iteration for incorrectly fitting the 
indentation modulus to a standard with up to 11 free parameters. The iterative 
evaluation of the elastic modulus        can by far not be reproduced by 

iteration-free direct calculation of   , when using the underlying formulas for 

        , and  . For cubic aluminium the errors amount to a factor of 3.5 or 3.1, 

respectively.  Every interpretation of indentation moduli as single unidirectional 
"Young’s moduli" is false. They contain shear moduli and are mixes in all 
directions. Even in this straightforward but already anisotropic instance, the three 
separate packing diagrams of body-centered cubic α-iron provide as an example 
of the combination of three independent Young's moduli (and hence also three 
shear moduli). More linear moduli ensue in lower symmetry crystals as 
exemplified with  -quartz. The first physical indentation modulus is deduced by 

removal of the physical errors of       , or after indenter compliance correction 

    .                does no longer violate the energy law. The conflict between 

physics and ISO is especially harmful because Eiso is utilised to calculate several 
mechanical characteristics that are frequently used. Due to serious violations of 
the fundamental energy law and other physical rules that govern daily life, these 
spread the inaccuracies into failure risks of incorrectly estimated materials. There 
are issues that need to be resolved quickly by new ISO standards. The first 
recommendations for using Ephys, and ultimately measured bulk modulus K are 
made. This needs to be evaluated and discussed right now.  
 

Keywords: Bulk modulus; compressibility; data correction; errors of elastic 
moduli; falsely calculated materials; falsified iterations; HookRUS-
technique; indentation modulus; ISO-standard; Mechanical 
parameters; physical modulus; shear modulus; young’ s modulus. 

 

5.1 INTRODUCTION 
 

The availability of physically accurate mechanical parameters was made possible 
by the ISO-standard 14577 for indentation hardness (HISO) and so-called Young's 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Highlighting the Dilemma between Physics and ISO Elastic Indentation Modulus 

 
 

 

 
56 

 

modulus (EISO) [1-3]. This suggested a return to the first energy conservation 
law—the elimination of dimensional errors—after a half-century. In addition, any 
surface effects or phase transition onsets that might occur under a mechanical 
load are now disclosed by depth sensing (unlike with single load techniques like 
Vickers, Brinell, Rockwell, etc. hardness), and these can be avoided by applying 
a lower force [1-3]. Iterations and approximations are now easily avoided at the 
expense of linear regression analyses. Indentation hardness       was deduced 

as physical quantity for the first time and ISO modulus definition was 
provisionally improved. Materials can now be physically correct described and 
numerous unexpected applications ensue by use of simple closed formulas. But 
there remains further trouble with ISO-modulus      [2,4]. It is falsely called 

"Young’s modulus" but a unique indentation modulus    as compared to 

unidirectional Young’s modulus  , shear modulus   and bulk modulus K. And the 
physical modulus Er-phys = (d1.25FN/dh)/A is shown in Chapter 4. 
                                                   It is therefore timely to 

unravel the misleading situation with        and        . The readers may remark 

in certain updates of this topic [5-7] that such considerations are still badly 
missing in these papers. 

 

5.2 MATERIALS AND METHODS 
 
The nano-indentations used a fully calibrated Hysitron Inc. Triboscope      
instrument with AFM leveling in force-controlled mode with a Berkovich indenter 
           at the exclusion of phase change below      and validity check 

with the "Kaupp-plot"    versus      [2,8] throughout, also for correction of initial 

surface effects. Stiffness values   are calculated by linear regression of the 

upper unloading data points, as long as these decrease linearly. Crystal packing 
was imaged by use of the program Schakal 99 from Egbert Keller, University of 
Freiburg i.Br., Germany. The cited literature data have been checked and 
interpreted in view of the mathematically deduced new general physical laws with 
closed simple formulas in accordance with validated experimental data, 
excluding all forms of iterations or approximations. Phase changes under load 
were detected by kink-type discontinuity in linear regressions. The precise 
intersection point was obtained by equating the regression lines before and after 
the onset of the phase change. The necessary energy law correction by virtue of 

the physically deduced         law is         (the energy law violation 
correction of ISO would be    , as long as the unphysical exponent 2 on the 

depth   would still be continued). 

 

5.3 RESULTS AND DISCUSSION 
 
Flaws of the ISO indentation modulus 

 

The reduced ISO indentation moduli values are defined as                   
   

 

and iteratively obtained against a standard. These are therefore no absolute but 

relative quantities. The corresponding definition of absolute    is then       
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   . At first, ISO iterates the unloading curve according to    

              
  with the three independent parameters          and exponent   

for obtaining the maximal slope with                          
      

       is then calculated as           
   

 and from there      with      

              
     , where i denotes the values of diamond. It follows a 

further iteration of     with eight parameters    (also sign change option 

allowed):        
        

             
           

   
     

   
   

    
       for fit to the Young’s modulus of a standard. This result is then falsely 

called "Young’s modulus" [9] in ISO-14577. This iterative procedure with eleven 
free parameters does however not obtain a physical quantity [2]. It is per se 
troublesome. 
 
Even more serious problems occur with the convergence prescription of the 
iteration. While the direct calculation of     is possible with            and the 

deduced formulas            of [9], this path was not followed by ISO, but they 

standardize the described iterative procedures by fitting against a standard. The 
diversion between the two paths is enormous. By using the direct path we follow 
the defined underlying basis of [9] and obtain for the unloading curve of, for 
example, cubic aluminium [10] with uncorrected                 
              , and        the value          FN-max             and 

the value of                              . When the direct calculation with 

    is changed for           , we obtain the absolute                     . The 

respective error factors     and     when compared with                      

[10] are enormous! They falsify convincingly these ISO iteration standards not 
only for this example. Such discrepancy similarly happens with other materials 
but it can be less drastically. The described iteration procedures for        cannot 

describe the claimed above definition of       . This demonstrates enormous 

data-treatment by false iterative fitting to unrelated Young’s modulus. 
 
Clearly, the "Young’s modulus" claim of ISO is faulty from the beginning. It 
cannot describe a response to a unique linear elastic stress. Indentation moduli 
are face-dependent multiple mixtures of linear and shear moduli around the skew 
conical, pyramidal, spherical, and further indenters. Furthermore, it violates the 
energy law because    creates not only work for volume but also     of its 

value work for pressure generation and long-range modifications. This surprising 
generality has been easily deduced           . Finally, ISO does not detect and 

avoid any phase transition onset that might occur at           , which must 

be done by checking for sharp kink in the linear Kaupp plot         of the 
loading curve. 
 
The physical indentation modulus 

 
With the generally required aim for minimal change of existing hypotheses we 
start with the formal relation between unloading stiffness             
            experimental) and elastic modulus      in the form of    
            as above, which appears to have been successful in several 
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Russian papers of the 1970s and 1980s, as cited [9]. The             factor is 

obviously derived from elastic contact theory arguments. The      reflects one-

dimensionality. It was adopted by [9] and ISO with the complication that it had 

been termed as root of contact area    
   

 (see preceding paragraph). Fmax for S 

must now be corrected with factor 1.25, because one must also include the 20% 
pressure part that is lost for the depth. We deduce so the physical hardness. As 
pyramids and cones have different areas A we prefer now the general equation 
5.1 for the physical indentation modulus. 
 

Er-phys = (d1.25Fmax/dh)/A                                                                        (5.1) 
 

The physical formula avoids energy law violation, and initial surface effects. But 
the maximal force must be below the phase-transition onset force for obtaining 
the impression modulus of the pristine material.  All what’s needed is the simple 
mathematic correction after linear regression of the loading curve before the kink. 

        also avoids multi-parameter iteration fitting to a standard’s Young’s 

modulus. We obtain the absolute elasticity modulus of                     

for aluminium. That is very different from the obsolete iterated ISOmodulus (73 
GPa) published [10]. 
 
Comparison of indentation with Young’s moduli 

 
We must now stress the principal difference of indentation moduli         and 

unidirectional Young’s moduli. Valid Young’s modul detections require Hook’s 
law, for example by unidirectional reversible tension             is pressure), 

or ultrasound speed in long rod                  is density). In more 

complicated cases resonance ultrasound spectroscopy (RUS) is used. Correct 
linear Young’s moduli are unique in different directions, excluding shear-moduli. 
The 6 by 6 matrix of Young’s moduli gives by cancellation 21 of them. This 
decreases further by crystal symmetry to      , or in the cubic case 3 

independent moduli, as is generally communicated. Conversely, indentation 
moduli are multiple mixtures of linear and shear moduli around the skew conical, 
pyramidal or spherical and further indenter from all sides. They are face-
dependent due to their different weight at different positions. As there seems to 
be some uncertainty about isotropy of cubic crystals that have been termed as 
"very isotropic" for the case of metals [9] and also by ISO, we demonstrate here 
cubic anisotropy. Fig. 5.1 exemplifies the different packing of bcc  -iron along 

[100], [110], and [111]. These directions exhibit marked different packing 
properties and thus also three independent linear moduli in these directions, 
according to the complete matrix analysis. This is a basic model for all types of 
cubic crystals as for example fcc aluminium or sodium chloride, etc. Furthermore, 
also three independent shear moduli ensue upon indentation into cubic crystals. 
The situation becomes more complicated in all other crystal systems with more 
elastic constants. Importantly, Fig. 5.1 indicates that the common relations 
between Young’s, shear, bulk modulus, and Poisson’s ratio cannot be applied to 
any crystalline materials, due to their anisotropy. However, that has been 
frequently carried out. 
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A more complex system is exemplified with trigonal-trapezoidal  -quartz (P3,21 

or enantiomer P3,21) that mixes 6 independent Young’s moduli upon indentation, 
according to the matrix analysis each with additional shear moduli. The dilemma 
is evident from Fig. 5.2. The various reported moduli values are reported by 
Crystan Ltd [12] and the linear moduli were determined by NIST with the 
elaborate RUS technique [13]. Only the     value is still judged "troublesome". 
Also the tensional moduli   for two directions and the shear modulus   from 

bending shearing of the main axis and the hydrostatic bulk modulus   [12] are 

also included. These values are compared with the obsolete phase-transformed 
iterated ISO indentation      (no surface designation and no original data 
available [9]), the for that purpose still useful though obsolete phase-transformed 
iterated        moduli on 5 different faces of  -quartz from 2005 [14], and the 

formula for the physical indentation modulus [2]. 
 

 
Fig. 5.1. The packing variation at the bcc  -iron (Im-3m; a          ) along 
the frontal [100], [110], and [111] directions, from left to right, respectively, 

showing the variable packing differences in these directions 
 

 
 

Fig. 5.2. Comparison of various elastic moduli of  -quartz; this      
Er-phys formula is  false and obsolete; cf Sections 15 and 16 
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The largest variations are in the Hook RUS Young’s moduli series. The main axis 
tensile values are closest to the highest RUS values. All of these and the shear 
and bulk moduli are much smaller and unrelated to the much higher obsolete 
indentation modulus of Oliver-Pharr who initiated the ISO iterative modulus 
determinations with the false claim that these be "Young’s moduli" [9]. Similarly, 
our five old ISO indentation modulus values on five different faces [14] are much 
too high at the obsolete ISO iteration level, due to the faulty iterations and phase 
transition. Unlike the strong variation in the RUS series, they vary within     (the 

largest at the direction with the thinnest channels) indicating at least the 
incompatibility and the surface dependence. However, these experimental values 

[14] are now obsolete. Valid       indentation moduli appear most promising for 

the correction of the further mechanical parameters that derive from indentation 
(Fig. 5.3). They can not be identical with bulk moduli  . But  -values from 

compressibility measurements are much more difficult to obtain and their use 
with respect to indentation data would have to be carefully discussed. But this 
might perhaps also appear promising, because   includes all types of elasticity. 
Again, any relation of indentation moduli to Young’s moduli is excluded and must 
not be tried. 
 

 
 

Fig. 5.3. Some applications of elastic modulus as deduced for mechanical 
properties 

 
Modulus-containing mechanical parameters 

 
Fig. 5.2 indicates that the choice of an elastic modulus for the characterizing of 
further mechanical properties is not yet clear when most easily obtained 
indentation results are involved. The present problems are detrimental because 
of the numerous deduced parameters. The widespread use of the iterated so 
called "Young’s modulus" indentation moduli      must be stopped. Fig. 5.3 

collects the still most frequently applied uses of false-designated obsolete 
iterated      with its numerous described flaws. This is a detrimental situation 

with high general risk, as these values are unphysical. Any The unsuitable choice 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Highlighting the Dilemma between Physics and ISO Elastic Indentation Modulus 

 
 

 

 
61 

 

for elasticity deduced mechanical parameters is detrimental. dilemma of ISO-
standard 14577 with physics has to be replaced as soon as possible for the sake 
of correct science and even more importantly for every day’s security; because 
most of the mechanical parameters in Fig. 5.3 are ill-calculated against basic 
physics and falsified iteration. The perhaps first ray of hope for a change is 
perhaps the use of the bulk (volume) modulus   in the rheological Kelvin-Voight 

model [15,16]. It should be noted in this respect that the parameters containing 
the     fraction change their dimension with        or with  . This might pose 

difficulties with their meanings. With the other mechanical parameters of Fig. 5.3 
only their size will strongly change. The iterated ISO-moduli are obsolete and the 
non-iterated ISO moduli are still burdened with the physical flaws. But energetic 
and phase integrity flaws of the latter can be solved for reaching      . The 

present situation is still involved. Detailed discussion and much work must 
resolve these most important questions. 
 

5.4 CONCLUSION 
 
The situation of elastic modulus from depth sensing indentations requires 
complete revision. The physical flaws of      are energy law violation, not caring 

for exclusion of phase change onsets, and not correcting for initial surface effects 
under load. Another very severe flaw derives from falsifying iterations with up to 
11 free parameters (free sign change option) by obviously converging to Hook-
law Young’s modulus of standard materials by misinterpretation of the meaning. 
However, the indentation experiment is not at all unidirectional but contains linear 
and shear contributions from all sides of the skew indenters. This behavior also 
violates against the underlying definition of the ISO modulus and must be 
urgently discontinued. The false iteration becomes evident for example from 
cubic aluminium with                            and iterative-free 

                             , or                                          (all 

with the physical faults). Thus, only the newly defined absolute       of         

    or the corrected stiffness contain all elastic effects around the tip impression. 

Indentation moduli are thus not related to Young’s moduli. Fortunately,         or 

      do not contain any of the physical and iterational flaws of             . 

There remains the question whether         can be rapidly and broadly applied 

for the elasticity derived parameters of Fig. 5.3, Alternatives might be       or 

compressively measured bulk modulus K. Such decision may depend on 
theoretical or practical arguments. Corresponding series of data pairs from both 
fields for comparison are missing and should be made available for evaluation. 
 
     variations should no longer be used for Fig. 5.3 parameters and the like. 

Why shouldn’t we stay with physics? Who is liable upon failure of ill-calculated 
materials, and what about the judge and the victims? ISO standardization 
procedures are slow: 
 

1. We need new ISO standards and new textbooks for indentations!  
2. We must be enabled to rely on material’s properties and save health, 

time, and money! 
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3. Everything must become easier with simple mathematics without data-
fittings and/or iterations! 

4. We must no longer violate the first energy law and other basic physical 
laws! 

5. We must honestly teach on basic physics! 
6. We must remove previous errors! 
7. We must make daily life safer in the future! 
8. It is dangerous to fight against experimental evidence and convincing 

physical deductions based on elementary mathematics! 
9. Life becomes safer, and brighter with admission of the physical truth. 
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ABSTRACT 
 
A  sodium  chloride  single  crystal  is  depth-sensing  indented  with  a  Vickers 
indenter  at  a  Zwick/Roell  ZHV  Zwicky  Z2.5  macro  region  instrument,  together 
with Stephanie Rösner from Zwick GmbH & Co KG, Ulm, Germany. In order to 
experimentally secure the onsets of both known and unknown phase-transitions 
and  to  locate  them  with  direct  linear  regression  analyses  while  eliminating 
iterations. Normal forces up to 50 N load and 120 μm depth are applied.  Four 
sharp phase-transition onsets could thus be identified experimentally, uncovering 
four new NaCl polymorphs in addition to the long-known fcc and bcc polymorphs. 
It is unclear how they relate to the three theoretically anticipated higher pressure 
crystal forms in Reference. The projected metallic character is not clear because 
the author did not see any colour development or metallic reflection up to 50 N 
loads. At the indenter tip, there is no cracking of any kind, but at the 30 N ranges, 
there was a new sort of long-range cracking, and its highly resolved microscopy 
revealed two-step nucleation at a polymorphs' interface exit. Unloading observed 
with an inverted 3D microscope that a macroscopic crack had developed along 
the created interface direction and exited apon slightly higher force, far apart at 
the  crystal  edge.  Seven  powers  of  ten  are  covered  by  the  calculated  phase-
transition energies. These data cast doubt on the accuracy of non-depth-sensing 
ISO/ASTM  Standards  for  industrial  Vickers,  Brinell,  and  Rockwell  hardness 
parameters  because  they  cannot  account  for  multiple  phase-changes  that  are 
ineluctable under very high loads, do not define pristine as opposed to phase-
transformed industrial materials (including super-alloys), and fail to recognise the 
allowable  pressure  stress  for  delaying  phase  changes,  etc.  Depth  sensing  is 
necessary  due  to  the  possibility  of  failure  from  crack  nucleation  at  polymorph 
interfaces.  A  quick  way  to  identify  phase  changes  is  the  analysis  of  the  sharp 
unsteadiness  in  the  FN  =  k  h3/2  

plots,  as  shown  by  previously  reported  loading 

curves.  The  mathematically  required  5/4  ratio  of  applied  work  over  indentation 
work is then easily determined (Chapter 2).  
 
Keywords: 3D-Microscope; 3D impression shape; 5 consecutive phase-changes; 

consequences for vickers hardness; far distance crack nucleation; far- 
distance  effects;  favorable  model;  high  pressure  depthsensing 
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6.1 INTRODUCTION 
 
One of the most researched sodium chloride features is its mechanical 
Properties. Additionally, it has been calculated that the phase-transition above 
the well-known B1 (Halite, fcc, Fm3m) to B2 (bcc, Pm3m) of sodium chloride into 
more energetic ionic polymorphs with predicted metallic character ("above 
584GPa via indirect band-gap closure") could occur. These structures include 
Cmcm, Imm, and Pbcm at increasing pressure ranges and formation enthalpies 
[1]. Experimental evidence is still lacking, though. From a published experimental 
Vickers indentation diagram of NaCl, just one higher energy phase-transition (to 
yield #3 in the explanation that follows) had been taken out [2].  The linearization 
is the physically deduced "Kaupp-plot" (so scolded by skeptic iteration experts) 

          , as calculated from the experimental FN versus   loading plot [2]. It 

had revealed a kink discontinuity at      , which was attributed to the #3 

polymorph (perhaps CrB type?) under pressure [3], provided repeatability of the 
work [4]. Thus, the repetition experiment was necessary, because the paper of 
[4] contains several inconsistencies: multi-parameter iterations using ISO- 
       from              iteration, followed by a second order polynomial 

with           and "           " for a "sharp" Vickers indenter were used for 

the construction of an unphysical " FN versus    relation", or pileup was 

mentioned but it is not discernable in the provided images, or the figure refers to 
in situ values for      up to post-indentation values up to      (!) with error bars 

as "calculated from     data" [4]. Apparently, this tried to substantiate an 

(unphysical)   FN versus    relation", whereas the maximal load was only      . 

That is more than puzzling! Phase-changes were not considered [4]. All of that 
requires an experimental check for reproduction, in order to secure the result of 
our physical analysis that found a sharp kink at       by a phase-change. 

Furthermore, it was to be checked whether further increased load would allow 
the detection of further polymorphs with metallization of sodium chloride by local 
color change with a metallic reflection      . Also, the reproduction with the 
elucidation of any cracking appeared necessary. The thermal conductivity of the 

fcc      at       is          [6]. Also the thermal expansion (44 10-6/K) of the 
fcc [6] and bcc phase at are rather low [9]. This is relatively high for a non-metal 
so that we do not expect significant temperature increase during the endothermic 
phase-transitions upon the indentation. The effects of NaCl on cements have 
been studied in [7]. A recent compression (not indentation) study [8] of a 
chloride-anion from trimethylammonium chloride containing polymerized hydrogel 
sample provided a stress-strain curve for real Young's modulus (deformed 
length/original length) and numerous further mechanical properties. But a 
compression test is not indentation. The activation energy of the fcc to bcc 
transition (from RT to       ) is               [3]. The physical hardness 

     is the normalized energy-corrected indentation resistance   for conical/ 

pyramidal indenters [2]. That is general for Vickers indenter with       
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          , where   is the penetration resistance (the slope of the so-called 
Kaupp-plot) from FN = kh

3/2
 (Fig. 6.1). 

 

6.2 MATERIALS AND METHODS 
 
A drilled                 two sides polished sodium chloride mono-crystal 
window plate from Alpha Aesar Thermo Fischer GmbH, Kandel, Germany was 
used for the indentations at (for technical reasons)            distance from 

the sides. 3 at least      distant in-dentations at     loads were averaged. One 

indentation each was performed displaced at opposing sides for 20 and      

loads. The kinks have been calculated from the linear branches’ trend lines with 
       correlation coefficients. The displacement-controlled measurements 

used a depth sensing Zwick/Roell ZHV Zwicky Z2.5 macro region instrument 
according to ISO 14577 with compliance of                at       load and 

unload rates, and unloads after      hold periods, in the open air by the sample 

in the ambient atmosphere. The calibrated Vickers indenter (E 27781, MPA 
Stuttgart, Germany (DIN EN ISO 6507-2) withstood "the functional requirements 
within the allowed limits". A 3D digital optical microscope Keyence VHX 100 with 
a lens providing the      to       enlargement range was used with a CCD-

camera at almost uniform coaxial vertical (surjective) illumination through an 
optical fiber in the open air. The separate     lens was not adapted to the 3D-

facility. The light of a halogen lamp was coaxially reflected back by the sample in 
ambient atmosphere through a half mirror along the illumination axis into an 
optical fiber, sending the signals for digital imaging. Equidistant focal images at 
either 1 or     distance were taken under automatic position correction. The 

Keyence software composed these to 3D-images or projections therefrom. As 
the indentations and microscopy were performed in ambient atmosphere, control 
images were performed after 10 months storage in a closed box in the air with 
the silica drying grain of Alpha Aesar, to check the stability of the features. 
 

 
 
Fig. 6.1. Indentation force-depth curves on NaCl (a) up to 5 N and (b) up to 
50 N with a minor depression at 28.5 N and main depressions at 29.8 and 

34.0 N loads that are also seen in the linearized FN versus h
3/2 

plot (Fig. 6.2). 
They indicate the formation of very distant cracks 

 
The data analysis for indentations with pyramidal or conical indenters used the 
physically founded "Kaupp-plot" (normal force versus depth

3/2 
relation; (6.1)          
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(Fig. 6.2), the energy law-corrected universal indentation hardness       [10], 

and also the energy corrected indentation modulus         all without any free-

parameter iterations or polynomials or curve fittings          . Everything started 
with the penetration resistance values   (the slope of the so called Kaupp-plot) 

before and after the sharp kink onsets at the intersections of the calculated 
regression lines. Sectional integrations with respect to phase-changes obtained 
indentation work        , applied work          and by energy balance the phase-

transition energy              Only these known physically deduced eqns. (6.1-6.7) 

were used for the calculations [2,3,10,12-14]. Correction for any axis-cut is 

necessary. The linear regression lines are calculated with         in their 

regions. The correlation coefficient was always        . The linear red 

regression lines in Fig. 6.2 are hand-drawn along the plot branches for 
visualization. The unloading stiffness  , as obtained from the slope at maximal 

force of the loading force     , is obtained from the regression of the first linear 

points (with 100 to 500, mostly 200 points) of the original unloading data. The 
factor     is necessary for complying with the energy law, because the depth and 

volume have been created only with             . The use of eqn. (6.3) for Er-phys 

is reformulated for pyramids that are no longer pseudo-cones (Chapter 16, see 
there), with respect to incorrect, when excluding false pseudo-cone and correctly 
using the experimental stiffness   at peak load of the unloading curve. Eqns. (6.5 

and 6.7) are the physical deductions for the applied energy, for obtaining the 
energetic balance as phase-transition energy [5]. Due to the exponents and 
differences, the calculations used up to 9 numerals after the decimal point with a 
pocket calculator, followed by reasonable rounding at the end results. 
 
          FN = k h

3/2
 Fa                                                                                          (6.1) 

 
          Hphys = k = FN / h

3/2 
[mN/µm

3/2
]                                                                (6.2)

                                                                                                               
 

          Er-phys = (d1.25FN/dh) /A [mN/µm
2
]                                                          (6.3) 

 

                       
   

                                                      (6.4) 

 
                                                                                                (6.5) 

 

                                     
                                                 (6.6) 

 
                                                                                            (6.7) 

 
All eqns. (6.2-6.7) derive from the principal eqn. (6.1), where   is the penetration 
depth. The linear Kaupp-plot according to eqn. (6.1) reveals all initial surface 

effects by axis cut Fa for correction, and all exothermic or endothermic phase 

transition onsets as kinks between linear branches if these occur at the chosen 
load-ranges (Fig. 6.2). 
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The eqns. (6.1-6.7) are not reproducing the long history of conical indentations. 
The first trial was the Boussinesq’s problem of 1885 that found two different 
mathematical solutions in 1939 and 1965, but both with an exponent 2 on   

instead of     as in eqn. (6.1). The result from reference [15] was taken up from 

Oliver-Pharr and this became the basis for ISO 14577 with annual refinements 
and extensions, but still keeping with the exponent 2, [15-17], which is however 
at variance with experimental loading parabolas. All of these did not appreciate 
that the normal force is not only used for creating a volume but also for creating 
pressure to the environment of such volume. Due to the thus wrong exponent 2 
on h, polynomial iterations are required for fitting the load/depth parabolas, be 
there phase changes or none of them at the chosen loading ranges. Only most 

finite element simulations are made to converge with   , but these fail [14]. 
Unfortunately, the software of instrument builders must apparently obey to the 
false ISO standards with the Oliver-Pharr multi-parameter iterations for the 
measurement of      and       . As long as eqn. (6.1) was only empirically 
secured by the exponent analysis of loading curves there was a strange 
objection against eqn. (6.1) with the absurd construction of the transformation 
kink from a line between two points of a poor very blunt indenter measurement 
with the second linear branch, instead of between the also there depicted 
extended first and second linear branches [18]. They advocated the fitting of the 
whole loading curve instead, without separating out their considerable initial 
effect, by using broken exponents (e.g., exponent         or         ) for 

different parts of the loading parabola and thus acknowledging the very odd 
dimensions of such parabola constants. This failure encouraged another 
defaming publication in 2014 with an equally undue trial to degrade the physically 
correct "Kaupp plot" as "Kaupp-fitting" [19]. But the "Kaupp-plot" using eqn. (6.1) 
excludes all data-treatment, and it is therefore totally different from these author’s 
iterative polynomial data fitting procedures. They tried with a strange so-called 
"Theoretical Confirmation of the exponent 2 on   ", which is far away from any 

scientific deduction, by including the result in their "deduction" of their "theoretical 
confirmation", and they did not consider the excellent opposing curves [14]. It is 

unscientific to use a definition of hardness HISO that includes the (false) exponent 

2 on   (the hardness is the constant in the force-depth relation!) in connection 

with an also defined projected contact area     , for reaching        giving 

      as already defined in the definitions. The capital error in these definitions 
is their energy law violation, by not considering the energy for the pressure 
generation (a parabola with the false exponent 2 would require     of the 

applied indentation energy that cannot be obtained from nothing [5,10]. With 
other words: the coupling of volume formation with pressure formation is again 
totally disregarded [19]. Both factors require work that comes from the normal 
force   we call it         . 
 
These invalid allegations have been overcome by the physical deductions of the 
energetic situation in 2013 and of the exponent     as published in 

                          11). The scientifically valid deduction of the exponent 

on   of the force-depth loading curve starts with normal force       . 

Reference [2,5] rightfully combines the components of the normally applied force 
               

    
  (p for pressure,   for volume). The total pressure (  loss 
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of   by  plasticization,  etc)  is           [2].  With  the  volume               
 

    

 it 

follows         and  thus  also         that  is  lost  for  the  penetration.  With     
   

    one  obtains the  exponent         for    
 ,  and thus  also  the  exponent 

        for    
  .  Therefore  (after  conversion),        '   ,  which  had  to  be 

deduced.  It  is  Therefore  (after  conversion),              ,  which  had  to  be 

deduced. It is a universal physical law with mathematical precision [2,10,11]. The 
here  printed  eqn.  (6.4)  contains  also  the  obvious  extensions  for  the  case  of 
phase change. The linearly applied work is                         from where it 

follows with the indentation work                    and eqn. (6.1) that           

            in  eqn.  (6.5).  Thus,  eqn.  (6.1)  mathematically  quantifies     of  the 

lost work (a property of every parabola with exponent     ) and thus also the lost 

normal  force  of    for  the  indentation       .   Transition energies from phase    
changes (new phases have  different   values) are the energy balance as in eqn. 

(6.6). Eqn. (6.7) describes the linear normal force application, eqns, (6.3) and (6.5) 
are deduced [5,11]. 
 

 
 
Fig. 6.2. Linearized loading curves (Kaupp-plots) (FN versus h

3/2
) at (a) 5 N 

and (b) 50 N load, showing in red the linear branches that intersect at the 
phase-transition points: (a) at 2.487 N, (b) at  

24.428 N 

 
6.3 RESULTS 
 
Hardness, modulus, and polymorphs 

 
The ISO standard 14577 for pyramidal indentations violates the first energy law 
and denies physical dimensions. The analysis of loading curves       versus   ) 

(Fig. 6.1) according to the Kaupp-plot             (Fig. 6.2) recognizes phase-

change onsets by sharp kink unsteadiness only in the linearized loading curves 

with the correct exponent 3/2            . The physical hardness is obtained 

without complications from the penetration resistance   (the slope of the so 
called Kaupp-plot) eqn. (6.2) and the reduced modulus directly from stiffness   

and   according to eqn. (6.3) (without one with 3 and one with up to 8 

freeparameter iterations of ISO) [11]. Different polymorphs must have different 
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hardness and elasticity [11]. The       values in Table 6.1 vary by a factor of 

     , the indentation moduli by a factor      . However, the meaning of the 

latter must be considered with care, as multiply phase transitioned polymorphs 
are unloaded, the reversion rates of which are unknown. There is no modulus 
value for the halite (fcc) and for #5 in Table 6.1, as unloading curves within their 
load ranges for the present conditions are lacking. But such values cannot be 
easily judged and present conditions are lacking. But such values cannot be 
easily judged due to the expected strong enhancement of elastic moduli at 
increasing pressure (the tabulated Young’s modulus of       for fcc      cannot 

be compared) [20]. The physically deduced            definition both are not 

Young’s moduli. They are "indentation moduli". Young’s moduli are strictly 
unidirectional [11]. This restricts the general value of indentation moduli, even 
though they belong to the most cited and used values from indentations. 
Nevertheless, the         sizes are listed. 

 
Table 6.1 shows the  -values (penetration resistances) and transition onsets with 

the      -values.  The  values  of   and  thus       increase  by  a  factor  of       

and  indicate  four  phase-changes  though  at  very  different  normal  force  ranges 
from      to     . Their discussion must take into account that the polymorphs 

exist between their kink pressures, which are often disregarded. 
 
The pristine materials’ values have to be taken at loads before the first phase-
change kink that has to be detected with eqn. (6.1) and Kaupp-plot. For example, 
the  Figs.  6.1a  and         with     versus     do  not  recognize  phase-transition 

onsets. These are only revealed by the Kaupp-plots in Fig. 6.2 according to eqn. 
(6.1), as exemplified for the 5 and      impressions, The kinks are clearly seen 

there,  but  the  ranges  of  fcc  to  bcc  are  almost  hidden  at  the     ranges  and 

require the corresponding plots at much lower force that are not displayed here 
(Table 6.1). 
 
The  validity  of  the      loading  curve  of  [4]  could  be  confirmed.  Its  residual 

impression  diameter  (ca       at       )  compares  favorably  with  the  present 

one           after       load).  Also  the  second  transition  onsets  at          

and      ,  as  calculated  from  the  loading  curve  data  [4]  and  published  [3,5] 

comply  excellent  with  the            and                values  in  Tables  6.1 

and 6.2 . This confirms the first experimental proof of a third      polymorph at 

high pressure since 2013. The fcc to bcc transition of      of [2] is also present in 

Fig.  6.2a,  but  not  precisely  accessible  at  the  scale  of    .  Figs.       and       

demonstrate  the  situation  with  the      indents.  The  depressions  in  the      

regions locate the cracking onsets. These cracks are not radial or horizontal at 
the indenter but far-away long-range and they do not disturb the linear branch as 
depicted with the upper thin red line (the depression points are of course not part 
of the regression). Interestingly, the second through fifth phase-changes from the 
5 , 20 , and      impressions did not exhibit a color change or metallic reflection d
own  to 0.1   m  (Tables  6.1  and  6.2),  as  should  be  expected  for  metals,  but 
electric  conductance  measurements  during  indentation  of      are  additionally 
planned. 
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Phase-transition work 

 
Table 6.1 also contains the indentation works (6.4) for their stability ranges (for 
#6 only up to      ) of the various polymorphs and the normalized values that 

strongly increase with the loads. As integrations are not allowed over 
unsteadiness such as e.g., kinks, these        (Table 6.1) were obtained by 
integration eqn. (6.4) from zero to first kink, then kinks to next kinks, and finally 
last kink to the chosen end. The variation of the indentation works is very large           
(    powers of 10, and normalized by a factor of 872 . While the fcc (Fm3m) 

and bcc (Pm3m) polymorphs are well documented, only quantum chemical 
calculations predict higher pressure polymorphs with space groups     , Imma, 

and      [1]. Further possibilities for the sixth polymorph are perhaps the not 

predicted Pnma, twinning, or amorphous phase. There is yet no means for 
selecting and inserting another polymorph into the theoretical sequence of 3 
polymorphs with increasing enthalpy. 
 
The quantitative physical indentation allows for the determination of phase-
transition energies, using the non-iterative elementary closed eqns. (6.5-6.7). 
The energy balance is calculated using        kink by kink from Table 6.1 that is 

multiplied with     for obtaining the applied work               and then the 

phase-transition work             (6.6) that is subtracted from the full applied work 

for all sections from zero to the kink value in       [5]. Finally the whole 

transformation energy up to      is obtained by summing up all sectional          

contributions. The values and sums are listed in Table 6.2. For example the 
full          up to      is the area of the triangle of zero to      of the      

curve            , up to the final load (50N), and hypotenuse from zero to 
           . Fig.       when extrapolated to         gives             for full 

         The sum of all sectional         values is               (Table 6.2). 

The subtraction from full                       gives the full transformation 

energy from zero to         as            . This is remarkably       of the 

indenter work: the indenter has to provide that work for the 5 endothermic phase-
transitions to occur up to         load. 

 

The energy treatment provides variations up to                    ,      

    (full           , and          fold                of the different works (the 

capping of the #6 value at         load is arbitrary, not related to a physical 

event). All of these 4 phase-changes of      are endothermic. The contributions 

of the normalized transition work      per     are also strongly increasing with 

the load by a factor of          (Table 6.2). We deal here with the polymorphs 

that actually exist at the indenter interface for a characteristic load-range, in 
addition to the displaced phase-changes regions that, of course, continue to be 
shifted, more and more away from the tip interface with formation of their 
respective interfaces that may or may not be commensurate. Here we have no 
cracks around the tip but only very distant macro-cracks at very high load (Figs. 
6.3-6.6). This certainly complicates the meaning of the indentation moduli from 
the unloading curves, when the highly energetic polymorphs revert to the stable 
halite (fcc). 
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Table 6.1. Mechanical data of depth sensing Vickers indentations onto an optical      window plate, including the physical 
indentation work 

 
The NaCl 
transition onsets 

k-values (mN/µm
3/2

) 
and Fa (N) 

FN kink (N) Hphys=0.8 k/(π tg 
α

2
) (mN/µm

3/2
)
e)
 

Er-phys=0.8 S/(2 hmax tg 
α) (mN/µm

2
)
e)
 

Windent =0.4 k (h2
5/2     

−h1
5/2

)+Fa(h2−h1) (Nµm) 
Normalized 
Windent(Nµm/N) 

fcc to kink
a)
 4.1014; 

0. 000067 
0.000618 0.2408 n.a.b) 0.000038908 0.06296 

fcc to bcc
a)
 6.6796; 

0.0005632 
0.003397 0.2724 32.245 0.00076675 0.2759 

bcc to #3
c)
 28.2; 

0.0222 
2.4870 d) 0.7427 21.617 21.9236 8.6668 

#3 to #4 33.8; 
−0.6964 

9.1186 1.101 17.698 136.1690 20.533 

#4 to #5 35.6; 
−1.0890 

24.4284 1.160 n.a.b) 604.6890 39.5121 

#5 up to 50N 43.9; up to 50 1.430 14.356 1404.5208 54.925 

(part of #6) −8.3251      
a) Indented with Berkovich [3]; 

b) Not available; a first principle calculation predicts bulk moduli of           for fcc-NaCl and           for bcc      at zero pressure [20]; 

c) This polymorph was assumed to be the bcc      [2] but already corrected [4]; 

d)This reproduces the       value at        depth [2] as had been extracted from the published loading curve of [4]. e)These values had been calculated with the now 

disproved pseudo-cone formulas (see Chapter 16) 
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Table 6.2. The arithmetically obtained applied and transition energies of the various NaCl polymorphs upon depth sensing 
nano to macro indentation with the Vickers indenter 

 
NaCl transi-tion 
onsets 

hkink (µm) Wapplied (Nµm)  Wapplied (Nµm) Full Wapplied (Nµm) Wtransition (6) (Nµm) Normalized Wtransition (Nµm per 
µm) 

fcc to kinka) 0.1909 4.8639 ∙ 10
−5

 4.8639 ∙ 10
−5

 5.8988 ∙ 10
−5

 1.0349 ∙ 10
−5

 5.4212 ∙10
−5

 
fcc to bcca) 0.69784 95.8437 ∙ 10

−5
 1.007076 ∙ 10

−3
 1.4790 ∙ 10

-3
 0.471924 ∙ 10

−3
 0.6763 ∙ 10

−3
 

bcc to #3 20.80762 26.95876 26.959767 27.018690 0.058923 2.8318 ∙ 10
−3

 
#3 to #4 45.01300 170.21126 197.17103 205.22778 8.05675 0.1790 
#4 to #5 82.89834 755.86927 953.04030 1012.29245 59.25215 0.7148 
#5 up to 50N 
(capped #6) 

120.8539 1755.6510 2708.6913 2980.88 272.189 2.2522 

a) Indented with Berkovich [3] 
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Inverted shape of the residual impressions 

 
Impressions are better imaged in the inverted pyramidal form and as sharp 
projection of their 3D-images for better looks at their height and surfaces. This 
helps to qualify the surface appearances (Fig. 6.3). The side faces are mostly 
smooth, but there is always some material on the impression faces, small at the 
lower load and larger at the higher and highest loads. The edges and apices are 
always rough and thus clear indications of reverting      polymorphs. Particularly 

the      (cubic to brick-like) and      inverted impressions (less so also at     ) 

reveal crystallization at the apex (actually depth) and at the edges. This confirms 
the obvious corresponding polymorph reversions. The regular structures that 
cover the edges are also seen in the 2D-projections and these differ from each 
other, due to the varying number of reverting polymorphs. Upon 10 months 
storage, the features along the rims completed their crystallization giving linearly 
aligned cubes each with     side lengths; most of them almost perfect to both 

sides in the horizontal direction of Fig. 6.3c. The depth of the      impression 

stays at measured      ; most of the side faces remain smooth. The white 

areas augmented 4 to 5-fold, but their maximal height of     towards the 

indentation surface was not superseded (these are, of course, depressions at the 
inverted Fig. 6.3). This augmentation upon long storage excludes their being 
surface defects of the indenter. The darker areas remained less than     high 

giving more straylight than the white ones. Moisture influence is thus very 
unlikely, as that would have influenced the extremely small        crack lines 

in Fig. 6.6a, below. 
 
On-site studies with highly focused X-ray diffraction would appear promising for 
verification of the theoretically predicted structures and for the elucidation of the 
sixth polymer’s structure. 
 
Cracking behavior 

 
The lack of any radial or lateral cracks at the indenter tip interfaces up to      

load and       depth is surprising in view of the multiple phase-changes. It is 
not only due to a high ductility, but also to an apparently reasonable compatibility 
between the adjacent polymorphs, as these are formed. This is already seen 
from the fact that the bcc      volume undergoes a considerable decrease from 

     to         at      , when the pressure in an anvil cell is increased from      
to        [21]. Furthermore, the experimental         volume drop of      

[22], and the small predicted volume drops from first-principle calculated 
polymorphs of               ),            , and       [1], are also judged 

helpful for avoiding cracks. Fig. 6.4 proves the absence of radial cracks with 
highest precision by      and       lens 3D-microscopy. This excludes 

calculation of common fracture toughness values. Also lateral cracks were not 
seen on careful visual inspection of the fully transparent sample. Importantly, the 
absence of cracks from the corners is still retained after 10 months storage       

impression with       lens). 
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Fig. 6.3. 3D-microscopic images of inverted residual impressions, and their 

projections (a,a’)             ; (b,b’)               ; (c,    ) 
               

 

 
 
Fig. 6.4. 3D-microscopic inverted corner images of indented NaCl with the 
apices capped of (a) residual 20 N impression (5000X lens; 14 x 1-μm focal 

distance images composed), (b) 50 N impression (500X lens; 28 x 5-μm 
focal distance images composed), showing the distinct end at the corners, 

excluding any radial cracking 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Investigation on Six Polymorphs of Sodium Chloride upon Depth-Sensing Macroindentation with  

Unusual Long-Range Cracks Requiring 30 N Load 
 

 

 
76 

 

 
 

Fig. 6.5. (a) Flash photo on        of      at 29,8 and      at the      
indentation, showing both cracks enhanced by the shadows; (b) 

microscopic 2D-image with     lens on       , showing both the base of 
the impression on (100) shining through from underneath and the crack on 

      ; unfortunately the actual stop of the crack after     of the front face 

could not be shown by the   -microscope with vertical illumination in 
reflection mode. The crack ends at the white bar that was added 

 
Only two large cracks formed at short sequence in the      regions, far away 

from the indenter corner, but only at the opposite side of the        thick 

sample. They happened when the depressions of Fig.       occurred. The 

exclusive formations of     and        long cracks on        of sodium chloride 

along the (00-1) cleavage planes (with respect to (100) for the indentation) at the 
extreme loads of      and        when reaching       and         indentation 

depth (Fig. 6.1b) are unusually far away from the actual impression. Fig. 6.5a 
shows a flash-light photo of the        surface (opposite to the impression side). 

These cracks are enhanced by the so generated shadows. The top one ends at 
half of the outer sample depth, the bottom one at about     of the sample depth 

of       . The distance between the crack planes is        . 

 
The   -microscopic image with a     lens (Fig. 6.5b) shows the     indent from 

the backside (coming up) with its basal diameter of         . For technical 

reasons the stop of the crack at     of the front face (a white bar has been 

included) cannot be shown by the    microscope with vertical illumination at 

reflection mode in Fig. 6.5b. The distance of the indent to the sample edge is 

       . The distance from indent’s center to the (00−1) planes of the cracks is 

        and        , the distances to the start of these cracks on their surfaces 

are      and         , respectively. The cracks reach a maximal width of      
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and     towards their exits, where their depths are      and        down with 

end-widths at the     range. The very far distances of the cracks from the 
indentation and none of them at the indenter deserve a closer inspection (Fig. 
6.6). As already mentioned in the Hardness, Modulus, and Polymorphs Section, 
the long-range crack formations are responsible for the depressions in the Fig. 
     . The miniscule depression at        preceding the first more important one 

at        provides an important clue for the nucleation event. Clearly, there must 

have been a primary cracking trial and that is seen in Fig.      with the         

distant nucleation that appeared first. It shows the interrupted nucleation (position 

2) that grew from a very narrow tail along a (00−1) plane, apparently starting at 

an about      inclined interface of polymorphs, reaching        width, but shortly 

thereafter ceasing, again along (00−1). Shortly thereafter it resumed, formed a 

grain that still seemed to have some problems for proceeding, but it was finally 
successful (position 1 in Fig.      ), without interruption till the exit. It rapidly 

reached     width, narrowed to 1 to       after       and again after       

(both for about      length), and more or less continuously assumed 4 to            

finally        width till the exit. All of that strictly keeps with the (00−1) cleavage 

plane without any sidewise branching to the equally packed () cleavage plane 
(Fig.      ). And all details of the nucleation (including the slight imperfections of 

the surface at       enlargement) were precisely reproduced after 10 months 

storage of the sample. This confirms the cracking from an interface exit of 
different polymorphs, as pushed away from the indenter by increasing load, 
where it coincided with a         cleavage plane. It proceeded along with it by 

using part of the flatly upcoming (about     ) interphase. 

 
Apparently, the first macroscopic cracking produced enough stress for triggering 
the common but still highly hindered nucleation at the          distance from 

the indent around a thus formed grain, as shown in Fig. 6.6b. This second crack 
continues from there with     width for      length where it interrupts 12 times 

giving parts with         width all along       . From there it resumes 

continuously first with    , then    , and 5-7    width till its exit at        

length, again strictly along the (00-1) plane. This must not have been happening 
along an interface of polymorphs at so far distance from the indent. This more 
distant crack is thus taller than the closer one. The 12 interruptions after      

length indicate again the difficulties for such cracking of the optical      single 

crystal material. Fig.       again shows the smooth run without side branching. 

 

6.4 DISCUSSION 
 
Indentation hardness and modulus 

 
The depth-sensing indentation answers from the transparent      model are 

particularly reliable, because there were no distortions by cracking emanations 
from the indenter up to      loads. The first physically defined linear regression 

hardness       should gain increased application value at the expense of unclear 

indentation moduli   and their false equalization with Young’s modulus by the 
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ISO standard 14577. Due to their different physical meaning any numerical 
resemblance between unidirectional Young’s modulus and the ISO or physical 
indentation modulus is at best fortuitous [11]. The disregarded change by phase 
transitions and poor repeatability of unphysical      are particularly troublesome, 

as numerous mechanical properties are continuously deduced from     [11]. For 

example, they are used as finite element iteration input. Also, the still multi-
directional indentation moduli         values in Table 6.1 (bcc NaCl:          

    ) can not be compared with published experimental or first-principle 
calculations of for      (fcc:       , bcc:           ), or experimental bulk 

moduli (fcc:       to                       )           . The steep pressure 
dependences of unidirectional Young’s moduli or bulk moduli (from constant 
hydrostatic pressure) are not comparable with the pressure changes at a 
retracting indenter. For example, the first-principle calculations predict for the 
transition pressure             values of        for fcc      and        for the 

bcc polymorph. The latter value is predicted to increase to        at       

pressure. Also, the calculated bulk and shear moduli are predicted to steeply 
increase with applied pressure [20]. And there is also the temperature 
dependence with heated materials. To learn more about the elasticity behavior 
upon unloading, it might be useful to very carefully study the unloading rate 
dependences within every phase transition onset ranges. Reliable elastic moduli 
for materials at high pressures combined with high temperature are certainly 
required. The indentation modulus situation is very confusing indeed and one 
should always take into account, whether an elastic modulus types’ use is for 
length- or volume-related properties. ISO and ASTM add most severely to this 
confusion with indentation moduli by not detecting or appreciating the phase-
transition onsets (Table 6.1). This creates high risks for the widespread use of 
    , including thereof deduced and calculated other mechanical parameters 

(more than 10, from adhesion to toughness) [11]. These unacknowledged daily-
life risks derive from formation of interfaces between polymorphs, facilitating 
crack nucleation. They must be discontinued and replaced by reliable physical 
techniques. 
 

Indentation         moduli reliably characterize pristine materials only before the 

first phase transition onset, but they are also not Young’s moduli. Unlike        , 

the linear regression hardness        (penetration resistance  , the slope of the 

so called Kaupp-plot) values from depth-sensing indentations (2) favorably 
govern the energetics (Tables 6.1 and 6.2), detect other important material’s 
properties (e. g. surface effects, gradients, inter-layers, cracks, adhesion effects, 
phase transitions, exclusion of one-point invaluable measurements), and are 
most promising for further unprecedented applications. 
 
Phase transition and unusual cracking 

 
The sharp phase transition onset at the kink position - of with Kaupp-plot (6.1) 
analyzed loading curves - succeeds with on-site Raman spectroscopy, electron 
diffraction, X-ray, and electric conductance, or other physical techniques, both in 
hydrostatic and indentation experiments. Most studied are the phase-transitions 
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of      and silicon with various methods that fit nicely together. This is already 

reviewed in reference [3]. After the unloading all energetic polymorphs must have 
reformed the halite structure, at the edges as cubes, and at some face sites 
probably as sub-micro crystallites. One should however check, whether these 
features would be amorphous or twinned      instead. This might perhaps open 

up another technique for achievement of twinned      (cf for references of      
twinning) [3]. Pressure induced cracking is generally facilitated by phase 
transitions. The transparent and phase-transforming      is nevertheless 

crackresistant for depth-sensing macro indentation. This is favorable for the 
demonstration of the sequence of phase-transitions, yielding reliable results. It 
allows for characterizing the polymorphs energetically with respect to work of 
indentation within their loading range and thus for obtaining the transformation 
energies. These important data required correct physical data and appreciation 
of the physically correct closed eqns. (1-7). The arithmetic covers multiplications, 
integrations, summations, and subtractions. The detection of phase-transition 
energies by checking the energy that is lost for an endothermic case (to be 
provided by the indenter), or won for an exothermic case (to help the indenter), is 
a major advance in mechanical physics [5]. The obtained results show better 
than the also determined   and   values how strongly these vary from kink to 

kink. It turns out that values how strongly these vary from kink to kink. It turns out 
that the pressure and plasticity including phase transformations is being 
distributed over very long distances in macro-indentations. Clearly, every more 
energetic polymorph zone at the indenter shifts all earlier energetic zones with 
their lower energetic polymorphs more and more away. This adds a new 
interface after every new phase transition onset. Any one of these may facilitate 
nucleation of long-range cracks. On the other hand, phase transition with volume 
drop helps to prevent cracks originating directly from the indenter, as in this case. 
The unusual cracking behavior of      deviates from the common radial, lateral, 

median, and combined types of strongly incommensurable polymorphs of brittle 
materials. The main reason for the non-cracking at the Vickers indenter within 
    , up to      loads appears to be the marked volume decrease under 

pressure. A volume decrease of     was reported for the first      bcc 

transition at the hydrostatic transformation pressure of         [25]. Fig. 6.6a 

clearly indicates that phase transitions under load and temperature stress have 
to be avoided in materials of technical use. Uncountable transformations and 
reversions in strained objects above and below the transformation force create a 
risk for crack nucleation by always forming polymorph interfaces. Thus, the 
transition onset must be determined via Kaupp-plot and defined as maximal 
allowance of the material in revised ISO/ ASTM Standards. 
 
One-point industrial indentations 

 
The most important flaw of ISO and ASTM standards is their nonconsideration of 
phase-changes that are of outstanding importance for the reliable 
characterization of the original material (before the load at phase-transition 
onset). The occurrence of sequential multi phase-changes with always higher 
energetic polymorphs is particularly troublesome for industrial one-point macro-
indentions          , HR, shore, LH, and more specialized hardness values) at 
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very high loads [12]. The first phase-changes occur already in the    and    

ranges, and unrevealed multiple phase-changes inevitably occur at the very high 
loads that falsify the mechanical descriptions and facilitate materials’ failures. 
These problems must be urgently avoided for industrial products that are used 
under high pressure stress. The present work underlines it with the study of 
highly crack-resistant sodium chloride as a suitable very simple cubic model 
system, exhibiting four consecutive phase-changes (only two of them were 
already known) and an unusual type of cracking.      (corresponding to     ) is 

still low for the "common" Vickers hardness load range of 40-980 N (HV 4-98) 
and may extend up to        (HV 150). But also the lowest loading region of 

      to      (HV 0.01-HV 4) cannot avoid phase changes [12]. Only the depth-

sensing macro-indentation and nanoindentations can reveal the phase-transition 
onsets (6.1). Theoretical calculations do not help, if they predict mechanical 
parameters that are far off the experimental results. 
 

 
 

Fig. 6.6. Optical 3D-microscopic projection images (5000X lens) of the 
cracks’ nucleation details on sodium chloride; the widths of the rectangles 
are        ; (a) the less distant from indention crack at      and        
load with an interruption, (b) the more distant from the indention crack as 

nucleated from a grain at        load; (c) first crack (5000X lens) at     mm 

of its length; (d) second crack (5000X lens) at        of its length, also 
showing its smoothness 

 

Long-range cracking nucleation 
 

The complete absence of radial, median, half-disc, and horizontal cracks at the 
Vickers indenter up to      force upon      at the expense of     and        
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long cracks along the (00-1) planes at large distance is unusual (Fig. 6.5). The 
cracks at the high loads of      and        represent a new cracking type that is 

highly resolved by the 3D microscopy. The depressions in Fig.       indicate the 

time of cracking, and that the first one had a two-step nucleation for the 
cracking,.                            and          away from the residual      

indentation onto the        thick single crystal. The difficult nucleation of the less 

distant first crack, obviously at an interface between two different polymorphs 
under load, in Fig. 6.6 a starts with a very narrow         scratch along 

       providing        width, but shortly thereafter it is reverting to such tiny 

scratch and resuming with a new trial that is finally successful strictly along 
      . No branching into        or        (Fig. 6.6a) occurs. The interfaces 

of the polymorphs occur about     inclined, and this concurs with the self-evident 

formation of phase transition interfaces. This happens away from the indenter 
further and further, as the load increases, and more so from the edge sides and 
apex of the indenter. 
 
The more distant second crack has been announced by the final depression of 
the loading curve (Fig. 6.1b). It was evidently triggered by the first macro-crack 
and has a common non-interrupted nucleation from around a grain, as seen in 
Fig. 6.6b. It runs smoothly with     width but experiences trouble after      

length with 12 interruptions within      of the length, but still strictly keeping with 

the once selected cleavage plane, and finally resuming uninterrupted with widths 
from       for a total of       . The value of highly resolving 3D-microscopy 

for such detailed knowledge is evident. The right/left bias in the present 
experiment is by chance (both are on the left side in Fig. 6.5). This may not be 
surprising for the second crack as triggered by the first one, but there are four 
corners of the Vickers and all orthogonal directions have identical cleavage 
planes in the cubic crystal lattice. The reasons may be some unavoidable 
miniscule deviation of perfectly normal indentation and the unavoidable wedge 
apex orientation of the four-sided Vickers pyramid. Disorder of this single crystal 
structure with extraordinary high crack-resistance appears a less probable choice 
than finding a coincidence of polymorphs’ interface exit with cleavage plane. In 
so far, the orientation bias of the cracks will probably differ in future experiments. 
 
Prospects for polymorphs’ structure determination 

 
The inverted 3D-images of the impressions and their 2D-projections retaining the 
depth sharpness yield important new information. Their surfaces are not 
completely flat but confirm the phase-changes into unstable polymorphs at the 
apices (deepest impression points) and particularly at the edges of the 
indentation with the reversions upon the unloading. These appear to partly 
crystallize into cubic halite features, which is best seen in Figs.       and        as 

brick-like or cubic objects. The by necessity fast reversions explain the different 
appearance of the ordered structures from the different polymorphs that only 
exist under load. The apparent crystallite formations are thus promising for onsite 
X-ray crystal structure determinations under load with sharply focused  -ray 

diffraction studies, which is an important task for the future. 
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The high energy transformations starting at             , and           (in 

addition to the 2 two known ones, giving a total of six polymorphs) are now found 
experimentally. But recent first-principle calculations predicted only three higher 
energy polymorphs with     , Imma, and Pbcm structures (describing only five 

polymorphs). The respective volume drops starting with the basic halite structure 
are predicted to                  , and       [1]. We cannot locate the sixth 

experimentally found unstable polymorph that could be Pnma, twin, or 
amorphous. The missing color changes up to      loads leave questions, 

whether ionic with metallic character of      is in fact present in the pressurized 

predicted          , and      polymorphs [1]. Measurements of electric 

conductance upon similar depth sensing macro-indentation are our next task for 
clarifying these points. 
 

6.5 CONCLUSIONS AND APPLICATIONS 
 
Indentation is not only hardness and indentation modulus. The iteration-less 
physical treatment of indentations opens several new advents and improves the 
techniques’ importance. The present work uses      as favorable ductile 

standard material to reveal a sequence of polymorphs by depth-sensing macro-
indentation at forces that would be used for Vickers hardness values of        , 

and 5. The      single crystal profits from full transparency and surprising 

crackresistance. New mechanical parameters are revealed, such as physical 
hardness       physical indentation modulus (avoiding iterations!)         phase 

change onset data, indentation work          and phase transition work 

        for all transformation steps with normalized transition work, and 

unexpected remote crack-nucleation details. This includes measurements of 
activation energies of phase transitions from temperature dependent indentation 
loading curves for the      fcc   bcc transition, as already published in 2014 [3]. 

All of that is only possible by using the physically founded universally valid closed 
eqns. (6.1-6.7), rather than iterations. 
 
Six different      polymorphs have been identified by their onset load and 

transition energies. In addition to     and bcc, first principle calculations predicted 

structures for three of them, proposing both ionic and metallic behavior [1], but 
we could not see color or metallic reflection up to      load (final clarification of 
theoretically predicted      metallization requires on-site electric conductance 

measurements that is planned). There remains the sixth polymorph to be 
energetically arranged. The surface shapes of the inverted residual impression 
images from 3D-microscopy furnish highly resolved images. These depict the 
reversion into halite       with clear sign of crystallization during the unloading at 

the (inverted) apex and tip edges. This makes on-site structure determinations 
with highly focused X-ray diffraction promising. The enormous crack-resistance 
of the single crystal      withstands      loads around the Vickers indenter 
without any trace of cracking at 5000 -fold magnification with 3D microscopy of 
the inverted residual impressions. Only very distant long-range cracks have been 
localized in the      regions and analyzed with highly resolving 3D-microscopy. 

These did not obstruct the further data regression up to     . The strongly 
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varying           phys,         and            values in the force ranges of the 

Tables 1 and 2 provide an idea about the huge errors of the not depth-sensing 
force macro-indentation techniques, according to ASTM Standards that do not 
acknowledge that pristine materials exist only up to the first phase-transition 
onset load. Severe errors are also occurring when phase transfer onsets are not 
determined or disregarded by the ISO Standard 14577 for nano- and micro-
indentations. These prescribe the still common double multi-parameter iterations 
on the basis of wrong exponent on the indentation depth, disregard (1), and still 
violate the principal energy law. The determination of the correct exponent     

on   (6.1) from the loading data is a matter of    minute when loading them to 
Excel and calculating the Kaupp-plot (eqn. (6.1) is finding any Fa correction term) 

[2]. When however innocent graphical integration of a loading curve deviates 
from the mathematical     requirement of eqn. (6.5), this must not be used for 

questioning (6.5). On the contrary, such undue habit would be a new technique 
for the initial search of phase-transitions occurring under load, by avoiding data 
point’s collection from published old loading curves for the Kaupp-plot. This can 
be demonstrated with an undue trial calculation: when the loading curve of 
Fig.       (not regarding the depressions) would be graphically integrated despite 

the 4 phase-change unsteadiness kinks (part of them are shown in Fig. 6.2), and 
if such "result" would be compared with the applied work according to (6.5), the 
ratio "Wapplied"/"Windent" would come out as "1.3857" but not       and therefore 

confirm the actual phase changes. Clearly, the physically sound eqn. (6.5) must 
not be questioned by faulty integration over phase-change kinks’ unsteadiness, 
but we can so rapidly obtain initial phase change information from innocently 
published previous loading curves for further studies. This work shows that only 
the now first physically defined nanoscale hardness      is precisely obtained by 

linear regression at loads before phase-change offsets. Only that characterizes 
the pristine material up to permissible load stress for its risk-reduced application, 
often within nano-indentation, exceptionally at first within micro-indentation. The 
      importance will therefore increase at the expense of unphysical       and 

troublesome      indentation modulus. Also the ASTM standards for one-point 

        , HR, Shore, LH, etc and hardness values are unphysical, as they do 

not consider the correct exponent     on  , violate the energy law, and disregard 

the multiple phase changes (also occurring at the calibration plates). These fast 
techniques must rather be complemented by depth-sensing macro-indentations 
with hitherto scolded Kaupp-plot (eqn. (6.1)) analysis, and supplemented with 
nano-indentation. This detects the most important phase-change onsets. 
Polymorph interfaces facilitate the nucleation of cracks with severe failure risks. 
When the phase changes are irreversible (e.g.,        to amorphousness [5]) 

the material might immediately fail. In the reversible case, cracks might occur 
after numerous transformations back and forth. This will ask for different 
materials or for addition of particular mediation agents that increase the load for 
phase-change onsets. But this must be controlled with depth sensing physical 
indentation analysis. Also the alternation of minor reversible endothermic and 
exothermic phase changes might be helpful. For example, this could be shown 

up to       with the famous ODS super-alloy INCOLOY MA956® (but only up to 

5     that exhibits alternating almost equally important endo- and exothermal 
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phase change onsets in the Kaupp-plot          Conversely, the 

                    super-alloy gave a strong endothermic transition at         
und          at RT (two linear branches, Berkovich, up to       ). Radial and 

horizontal cracks emanating from the impacting tip (these might also start upon 
the pressure release) must also be suppressed. Most high pressure polymorphs 
are unstable and additional thermal stress must also be considered with 
activation energy measurements of the phase-changes [3]. It is therefore highly 
relevant having exemplified the situation with a material exhibiting four 
phasechanges with a total of six energetically characterized polymorphs, not 
distorted by cracking up to      load. Only a new type of cracking (far away from 

the indenter on the opposite sample side) occurred in the 30 N load region 
(corresponding to HV 3). Such type of cracking might escape visual recognition 
in opaque materials. It is only indicated in the depth-sensing loading curve by 
small depressions as in Fig.      . These are also indispensable diagnostic tools. 
Thus, industrial depth-sensing macro-indentations, as supplemented by 
nanoindentation, appear as urgent tools for the failure fighting management to 
avoid unnecessary risks of technical products; urgently requiring revised 
ISO/ASTM Standards. Failures of materials have undoubtedly physical reasons. 
Mechanical parameters must therefore correspond with physics! 
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ABSTRACT 
 
The detection of phase transitions under load and their transition energy is made 
possible by non-iterative analysis of the indentation findings. On the basis of the 
empirically based normal force depth

3/2 
relation, the closed algebraic equations 

have been derived. The precise transition onset position is obtained by linear 
regression of the FN = kh

3/2
 plot, where k is the penetration resistance, which also 

provides the axis cuts of both polymorphs of first order phase transitions. The 
phase changes can be endothermic or exothermic. They are normalized per μN or 
mN normal load. The validity of the loading curves, including those from 
calibration standards that display previously undiscovered phase-transitions and 
are thus unreliable, is checked using analyses of indentation loading curves with 
self-similar diamond indenters. The loading curves from instrument vendor 
handbooks are utilized to calculate the phase-transition energy for fused quartz. 
For the first time, the anisotropic behavior of phase transition energies is 

examined. A helpful test item is -quartz. On the basis of the local crystal 
structure under and surrounding the inserting tip, the causes of the packing-
dependent changes are explained.  

 
Keywords:  Instrumented Indentation, loading curve; phase transition onset and 

energy; iteration-less plot; physical exponent; present ISO standard; 
energy law violations; physical hardness; error detections. 

 

7.1 INTRODUCTION 
 

Analyses and accurate calibrations are needed for instrumented indentations. 
Since at least 1998, modern instruments have been quite reliable, and the most 
common standards, fused quartz, aluminium, and sapphire, are consistently 
accessible in good quality. However, there are issues with not taking into account 
phase transitions that occur at even moderately high stresses of conical or 
pyramidal indentations [1,2]. Even worse is the data-treatment in the highly 
regarded Oliver-Pharr method is treated with data according to the ISO14577 
standard (of the International Organization for Standardization) [3]. As generally 
known, this is based on very complicated mathematical deductions that clearly 
forgot to take into account the sidewise forces and thus energies at conical or 
pyramidal penetrations. Their deduced normal force (FN)-depth square (h

2
) 
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proportionality [4,5] is therefore invalid. This standard cannot describe the 
experimental loading curves. Rather polynomial iterations are used, but these 
wipe out all surface effects, local gradients, elbows, and phase transitions under 
load. It was empirically found that the exponent 3/2 on h correctly describes the 
load parabola. This was first published in 2005 [6], with a review in 2006 [7], and 
later in [1] and [2]. Equation (7.1) provided excellent correlations and numerous 
unprecedented applications without fittings, or iterations. The validity of (7.1) was 
physically deduced in a clear-cut way. This was published electronically in 2015 
and open access in 2016 [8]. The basic idea for the physical deduction of the 
exponent 3/2 on h (7.1) [8] is the undeniable fact that the entire pressure plus 
pressure work―and thus also the corresponding part of the normal force FN goes 
with the indented volume of cones or pyramids, which is proportional to h

3
. This 

deduction of the physically enforced Equation (7.1) can easily be repeated with 
simple arithmetic. Or graphically: the work that is lost for the penetration is the 
area between the parabola with exponent 3/2 and its secant that starts at zero. 
Furthermore, the applied work (Wapplied) is the area under such secant of the 
parabola (down to the zero line). Furthermore, the indentation work (Windent) 
covers the area below the parabola, and it can also be described by the area of 
the 0 - hmax - 0.8 FN triangle [9]. It follows the 5/4 ratio of Wapplied/Windent that was 
already mathematically deduced by integration of (7.1) in [10]. The k-values in 
Equation (7.1) are the validated penetration resistances. They are obtained by 
linear regression of the FN versus h

3/2
 plots with excellent correlation. This viable 

analytical tool is disdainfully known as “Kaupp fitting” in the literature. We must 
therefore call it now “Kaupp plot (7.1)” to underline that it must not be degraded to 
a fitting technique. 
 

FN = kh
3/2

                                                                                             (7.1) 
 

The Wapplied/Windent = 5/4 relation means that the loss of FN for the penetration 
depth h is for exponent 3/2 always 20% with universal mathematical precision. 
This is totally independent of the material. For an assumed exponent 2 it would 
calculate to be 33.33% [9,10]. The non-consideration of such energy and thus 
also force losses is a violation of the first energy law in the ISO14577 standards 
and [3] ! Our energy correction for directly depth related mechanical parameters 
is the factor 0.8 (4/5 ratio), for keeping with the first energy law. This is, of 
course, already implied in the indentation work W indent [10]. 
 
For example, motorized aviation with flying machines required new physical 
understanding of aerodynamics and also knowledge of materials’ properties [11]. 
To make the former usable for airliners and airplanes they had to become faster, 
lighter, more efficient, and safer. The local analyses with (nano)indentation at the 
unphysical and iterating HISO and Er-ISO level are unsuitable. They could therefore 
not prevent catastrophic failures (not only with airliners), which have been termed 
“failure by fatigue of materials”. The liability clearly requires that local test 
procedures identify phase-transitions on the physical mathematic basis. We 
again urge ISO-ASTM to use the undeniable strict mathematical analyses, as 
presented here and in our cited publications since 2005. Addition of suitable 
ductilizers must optimize the super-alloys, so that the first phase transition onset 
force will be considerably above the permitted maximal force on them (also “pop-
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ins” must not occur upon load). Such analytical tests are required after the 
common long-term stretching, bending treatments, and after the repeated 
thermo-mechanical stress upon application with loading curves at the prescribed 
service intervals. The present technique is fast and easy for obtaining the onset 
information. 
 
The penetration resistance k [mN/µm

3/2
] is literately the physical hardness with 

respect to the used indenter geometry. For the general applications the 
(effective) cone angle dependency of the self similar indenters (see Chapter 16) 
is removed by the normalization as “penetration-resistance” hardness Hphys = k =  
FN/h

3/2
.  

 
Conversely, the still generally accepted definitions of indentation hardness as H = 
FN/Aprojected or HISO = FN/Acontact use the entire maximal loading force for the depth. 
This seemed to verify the physically false exponent 2. But the reasoning that the 
area of a cone “varies as the square of the depth of contact” [3] is misleading: 
such area (πh

2
tanα

2
) variation is self evident, but the volume of the conical 

indenter varies with πh
3
tanα

2
/3. Neither is the definition of indentation hardness 

according to ISO and [3] as “force (of a cone) over contact area” a “theoretical 
confirmation” of an “exponent 2” on h as claimed in [12]. This definition severely 
violates the first energy law! 33.33% (for an exponent 2) of applied energy cannot 
be made out of nothing, and force is related to energy! Unfortunately, the energy 
violation remained apparently undiscovered for all of these authors since 1939 
[4], and even so after our paper in 2013 [10] that quantified the violation with 
basic algebra. As above: the area of the 0 - FNmax - hmax triangle minus the area 
under the loading parabola with an exponent 2 would amount to one third of the 
total applied work. Nevertheless, this violation of the first energy law was not 
allowed to be literally expressed in publications before 1997 [9,13]. ISO14577 
and apparently most of the indentation world are urged to stop with tolerating the 
violations against basic physics. 
 

A further advantage of the physical indentation resistance hardness Hphys = k =  
FN / h

3/2 
is its independence of the depth (self-similar indenter!). We can therefore 

for the first time choose from hardness with respect to the penetration act (0.8 k) 
or with respect to the full indentation resistance (uncorrected k). An important 
discussion on what should be used for what theoretical and practical use is now 
opened. The papers [9,13], and [14] chose the first version for theoretical 
reasons. This can however easily be changed for more practical reasons. The 
definition of indentation elastic moduli Er from the unloading curve. But we need 
the full applied energy (for penetration and pressure) that is a factor 1.25 to the 
force responsible for the penetration. Indentation moduli are the still claimed 
“Young’s moduli”. But at best, they resemble the bulk moduli [13]. Clearly, all 
hardness and moduli determinations must be at loads before the phase-transition 
onset and it can no longer be avoided to detect it with the Kaupp plot (7.1). 
 

These important developments facilitated the easy detection of phase transitions 
by indentation. Previously such detection was restricted to a kink in the unloading 
curve. There is one in the unloading curve of silicon (though without onset 
information), which had been amply discussed as a particular exception [3]. On-
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site Raman spectroscopy, TEM, electrical resistance, electron diffraction, or 
micro-diffraction by synchrotron radiation revealed discontinuities and verified 
phase transition. We have a sharp kink upon Berkovich indentation onto silicon at 
the loading curve with onset information [1] [15]. Similar discontinuities in the 
Raman and current flow studies (see [15]) provided final support for our kink 
discontinuities as phase-transition onset. About 10 further examples using the 
more costly and highly specialized techniques are known. Correct indentation 
analysis obtains transitions right away with high frequency for all kinds of 
materials with transition onset and transition energy by simple indentation using 
Equation (7.1). Only the elucidation of the polymorph structures requires 
preferably onsite diffraction with highly focused synchrotron irradiation. 
Numerous confirmed phase transitions under hydrostatic pressure are long 
known, but these techniques are expensive and laborious without providing 
transition energies. Phase transition onset detections are indispensable for 
proper analyses of indentations. 
 

A further application of Equation (7.1) with the penetration resistance k is the 
reliability control of published measurements on the strict physical basis [8]. All 
partial deviations are either particular physical properties of the material (e.g. 
surface effects, phase changes, gradients, etc.) or experimental errors (e.g. poor 
calibration of force linearity, non-vertical indents, mix-up events, etc.). 
Importantly, the unphysical “exponent 2 on h” claim for the loading parabola 
enforced several multi-parameter polynomial iterations that prevented data 
checks by wiping out all particular effects including the phase transitions. Only 
Equation (7.1) with its linear plots sorts out the special effects from published 
loading curves and detects deviations from unsuitable experimentation. These 
include too close indentations, false assignment of materials or polymorphs at 
large indents, integrations over phase transition onset discontinuities, false 
transition energy sign, and further flaws that are discussed below. These checks 
remove severe additional errors of published H and Er next to all other systematic 
errors, even with calibration standards. Some further types for disclosed errors 
can be found in the corresponding Section below. 
 

Further applications use phase transition energies at different temperatures for 
the determination of phase transition activation energies [15]. Also multiple 
consecutive phase transitions have been published [14], and the transition 
energies of SrTiO3 on (011), α-quartz on (010), InGaAs2 on (001) are already 
known [10]. Some updates in this area are available elsewhere and may find 
attention of the readers [16-18]. These report interesting structural investigations 
of geologically transformed minerals, or they correct questionable quartz 
structures, or they study the influence of different quartz crystal shapes to their 
piezoelectric performance. This underlines the importance of crystallography in 
the distinction of polymorphs. However, the surface dependent anisotropy of 
phase transition energies upon indentation awaited elucidation. Quartz is 
available in amorphous state and as hexagonal crystal and it has different 
crystallographic faces. It is a particularly valuable material for that purpose. We 
describe the first anisotropies at four prominent crystal faces of α-quartz. 
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7.2 MATERIALS AND METHODS 
 

A fully calibrated Hysitron Inc. Triboscope® Nanomechanical Test Instrument 

with 2D transducer and leveling device, connected to a Nanoscope AFM was 
used for the own indentations. The apex radii of the cube corner (55 nm) and 
Berkovich (110 nm) diamond indenter were directly measured by AFM in tapping 
mode. The leveling to ±1˚ was in x and y direction. Loading times were 30 s up to 
5000 µN final load. All our measurements were performed with the same cube 
corner. The original data with about 1500 points each of our loading curves for α-
quartz (rock crystal) from [2], [6], and [7] were now used with more precise 
calculation (up to 10 significant figures) for the determination of the phase 
transition energies. Thus, rounding errors are minimized and Table 7.1 with many 
numbers characterize the specific data set as precisely as necessary. Loading 
data from the literature have been digitized with the Plot Digitizer 2.5.1 program 
(http://www.softpedia.com/). Electronic fittings or iterations whatsoever were 
never performed. The crystal structure data (P3(2)21, a 4.914, c 5.405) are from 
[19]. The crystal models were calculated using the Schakal 97 program [20]. 
 

A single well developed rock crystal with smooth surfaces and excellent colorless 
clarity was the α-quartz sample without twins at the surface. Its indexed major 
faces were horizontally leveled to slopes of ±1˚ in x and y direction under AFM 
control at disabled plane-fit. All FN and h data pairs from the loading curves were 

loaded to Excel® (Microsoft; Redmond, USA, WA) for the calculation of the 

h
3/2

 values and the linear branches of the regression lines provided the slopes 
(penetration resistances) k1 and k2, and the axis cuts F1-a and F2-a. They were 
used with all of their figures for avoiding rounding errors. The linear regression 
coefficients R

2
 were in all cases > 0.999 - 0.9999. The precise sharp intersection 

point (transition onset) was obtained by equalizing of the regression line 
equations and the so obtained hkink and FNkink values were calculated by using 
Equation (2). All necessary terms are thus obtained, as hmax and FNmax are 

directly available. 
 

3/2

N 1-aF kh F                                                                              (7.2) 

 

 W1-applied = 0.5 hkink (FN-kink + F1-a)                                                              (7.3) 
 

1-indent 1-applied0.8W W                                                                     (7.4) 

 

   5/2 5/2

2-indent kink 2-a kink0.4W k h h F h h                              (7.5) 

 

applied N-max maxfull 0.5W F h                                                           (7.6) 

 

 transition applied appliedfullW W W                                              (7.7) 
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Table 7.1. Physical parameters from the cube corner indentations onto four different surfaces of α-quartz (rock crystal) up to 
5000 µN load 

 

Entry Surface 
(hkl) 

k1 (µN/nm
3/2

) k2  
(µN/nm

3/2
) 

hkink (nm) FNkink  
(µN nm) 

ƩWapplied/5000 
(µNnm/µN) 

Wtrans/µN
(a)

 (µNnm/µN) 

1 (011) 2.5443 1.8609 85.75601036 2097.594374 97.6134 −15.744 
2 (010) 2.1574 1.7169 105.8103095 2237.798772 101.3803 −11.048 
3 (1−10) 2.2037 1.6475 101.5669094 2264.183535 104.5936 −14.663 
4 (101) 2.2147 1.6773 100.3591866 2241.625060 103.4883 −14.032 

(a)
For practical reasons we do not use the factor 0.8 to the µN values for the normalizations from kink to the final force
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The used Equations (7.2)-(7.7) for the calculations contain all of the obvious 
corrections [14]. The meaning of the terms has already been explained. 
Fa corrects for axis cuts of the regression lines that are due to surface effects. 
Only F1-a is also influenced by the apical tip rounding radius (R), giving larger 
penetration resistance up to hcone = R (1-sinα). It varies with the surface 
properties (including water layers). These depend on ambient conditions, which 
exclude their tabulation. The W1-indent is calculated from W1-applied according to 
Equation (7.4). W2-indent must use integration and correction with F2-a as in 
Equation (7.5), and W2-applied is then obtained by multiplication with 1.25 in 
analogy to Equation (7.4). The balance of Equation (7.6) and Equation (7.7) 
gives the transition energy W trans that was reasonable rounded in Table 7.1. 
 

7.3 RESULTS AND DISCUSSION 
 

7.3.1 Quartz, Aluminium, Tungsten, and Sapphire as Calibration 
Standards of ISO 

 

Unfortunately, all indentations of the most cited publication of Oliver-Pharr in 
1992 [3] with their iterated values of hardness H and reduced elastic modulus 
Er (from there with Poisson’s ratio elastic modulus E, which has been unduly 
called “Young’s modulus” [13]). They became standards for instrument 
calibration and numerous further quantities of materials for iterations and finite 
element calculations. It appears therefore of primary importance to check the 
validity of these old though still used measurements that lacked the 1992 not 
available physical insights. The authors of [3] did not have universal Equation 
(7.1) and thus missed that their force linearity and so their instrument compliance 
were not well adjusted above 90 mN to120 mN load for their published curves as 
designated with aluminium (their Fig. 4), “quarts” on (001) (their Fig. 5), sapphire 
(their Fig. 7), and tungsten (their (Fig. 9). That is consistently revealed by strong 
positive deviations from linearity (without kink appearance) above about 90 mN in 
our Kaupp plots (7.1). Defective tip surface cannot be the reason, as these 
deviations occur at different depths h. There is only one exception in [3]: the 
Kaupp plot of their Fig. 7.6 for soda lime glass has the last branch staying linear 
up to 120 mN load. Nevertheless, the iterated standard values of hardness H and 
modulus Er that use the maximal force are in error for all 5 examples: the faulty 
calibration adds to the unphysical h

2
, the energy law violation, and the non-

consideration of the phase transition onsets that occur before that load. Not the 
pristine material is tried to be characterized! These errors perpetuate in all further 
iterations that are made to converge to these values and the numerous qualities 
that are deduced from all of these values. They have at least influenced various 
reference table entries, not to speak of finite element calculations. Particularly 
troublesome are the errors in [3] for aluminium, which is often used as a standard 
for microindentation. Its phase change onset under Berkovich is known to be at 
30 - 40 mN, which became first known in 2013 [2]. And there are further errors in 
[3]. The designation of their Fig. 8 in [3] with “fused quartz” is in error. It reveals 
three linear branches (k1 = 76.044, k2 = 109.12, and k3 = 123.3 mN/µm

3/2
, all with 

R
2
 > 0.999) when plotted with Equation (7.1). This corresponds so perfectly with 
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the soda lime glass values from their Fig. 6 of [3] (k1 = 77.909, k2 = 105.28, and 

k3 = 122.0 mN/µm
3/2

) that the claimed “fused quartz” curve must in fact belong to 
the result from another soda lime glass indentation, despite the about 250 nm 
different maximal depths. Furthermore, their Fig. 5 in [3] of crystalline quartz on 
(001) is totally misinterpreted. The authors do not realize the situation from 0 to 5 
mN loads that is not really discernible in the Kaupp plot (7.1) up to 120 mN. As 
expected for crystalline quartz it rightfully starts steeply and soon thereafter 
continues less steeply, apparently by producing amorphous quartz around the 
Berkovich with its then endothermic phase transition. The initial exothermic α-
quartz transition [6] [7] can however not be analyzed in more detail at that 
loading range without a large number of original data points. But it is extremely 
troublesome to the reader of their Fig. 5 in [3], who became misguided about the 
mechanical properties of crystalline quartz until [6] and [7] had appeared. Clearly, 
the indentation of fused quartz up to 120 mN deserves new investigation. The 
exothermic α-quartz indentations ending at 5 mN are discussed in Table 7.1. 
Importantly, the properties of tungsten (k1 = 95.57, k2 = 114.50 mN/µm

3/2
; kink ≈ 

35.6 mN) and sapphire on (0001) (k1 = 236.58 and k2 = 264.68 mN/mm
3/2

, kink ≈ 
31.5 mN) (the better older curve up to 90 mN load of [21] was used) are poor 
calibration standards for the harder materials without consideration of their phase 
transitions. Further phase transitions are detected in macro-indentations for 
example sapphire transforms also at about 12 N load and 5.9 µm depth [2], and 
so does soda-lime glass at about 14 N at 11.7 µm when the loading curves with a 
Vickers indenter of [22] are analyzed with the Kaupp plot (7.1), and we mention 
here to the four consecutive phase transition onsets of NaCl at 0.003397, 2.487, 
9.1186, and 24.4284 N loads [14]. Any non-consideration of phase transitions 
generates errors at hardness and modulus iterations, including other materials 
and finite element calculations as these values concern not detected polymorphs, 
but not the pristine material. We complain that apparently nobody else did check 
all these grave inconsistencies since 1992 and hope that the new physical 
insights and possibilities will be used, instead of violating basic physics. 
 

7.3.2 Fused Quarts, Transition Energy 
 

Fused quartz is the most used calibration standard for nanoindentations. We 
analyze therefore the corresponding Berkovich (with half angle θ of 65.3˚) 
loading curves of prominent instrument provider Handbooks with respect to the 
Equations (7.1)-(7.7) and use of the new applications without any iteration. The 
first point is the detection of the long known amorphous to amorphous phase 
transition [23] under indentation [1], because hardness and modulus of pristine 
materials must be determined at loads before the first phase transition onset. The 
early onset of this endothermic transition (k2 > k1) has been denied on the basis 
of poor, or fitted, or too extended curves with low precision (e.g. [12], and many 
others), but a more detailed analysis with the Kaupp plot (7.1) reveals the 
transition as long as these are experimental [14] and so do the excellent loading 
curves from instrument builders as analyzed in [1]. However, the energetics of 
such transition is still unknown. The calculation is therefore performed by using 
the loading curves as published in the TriboScope manuals of Hysitron and of 
CISCO for UMIS. Both linearized loading curves give two linear branches that 
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correlate with R
2
 = 0.9999, each upon regression with the Kaupp plot (7.1). Their 

penetration resistance values are for k1 1.9654 and 1.9672 and those for k2 are 
2.4392 and 2.3936 µN/nm

3/2
 for Hysitron and CISCO, respectively. This leads 

after surface-cut corrections to transition onset depths of 109.6476605 and 
100.682078 nm at 2.348 and 2.117 mN. These differences reflect different 
measurement conditions. Most likely are different force calibrations or horizontal 
sample leveling devices that are not specified. It is therefore not surprising that 
the calculated normalized per µN transition energy values also differ: we 
calculate 6.206 and 3.563 µNnm/µN, respectively, for the endothermic 
transitions. These values are remarkably large when compared with the 
exothermic transitions that give the negative values of crystalline quartz (Table 
7.1). 
 

7.3.3 α-Quartz, Transition Energies at Different Faces 
 

Unlike fused quartz, crystalline α-quartz in the form of rock crystal undergoes at 
first an exothermic phase transition upon sufficient indentation stress. The 
projected images of the studied surfaces are shown in Fig. 7.1. Anisotropic 
behavior for the transition energies upon cube-corner indentation is to be 
expected, as the crystal packing is different. In particular the penetration 
resistances k1 and k2 had already been shown to be anisotropic with different 
indentation works Windent [2]. Table 7.1 with Miller indices (hkl) for simplicity (as 
the “i” in (hkil) is redundant) repeats less rounded k and kink values. The 
structure of the indented surface is important for the understanding of the varying 
Wtrans values of Table 7.1. Channels will facilitate penetration the better these are 
vertically aligned. That is roughly reflected by the k1, hkink, and Wtrans/µN values 
(entries 1 and 2 are most different, 3 and 4 are in between), but not by k2, FNkink, 
and ƩWapplied/µN. Clearly, there is also the force that acts normal to the surface of 
the cube corner with the opposite of its half angle θ = 35.26˚. It is therefore 
important to also consider the location of channels exiting from the side faces at 
the indenter surface for the transition energies. We therefore construct such 
surfaces at 35˚ and assume that not all of their so seen shapes will be destructed 
while the cube corner penetrates. They are obtained by rotation of the crystal 
structure around the X axis by + and − 35˚ (rX ± 35˚ ≡≡ 180˚ ± 35˚) and the same 
around an Y axis (as rY ± 35˚ ≡≡ 180˚ ± 35˚). The resulting images are projected 
(Fig. 7.2 and Fig. 7.3) and visually analyzed. The differences on the determined 
circumventing skew faces prove large enough to be helpful for the understanding 
of the different results. It turns out that the highest amount of normalized 
exothermic energy W trans = −15.744 µNnm/µN is produced by indentation upon 
the (011) surface (entry 1) of α-quartz with a cube corner indenter. The (011) 
packing exhibits not very favorable skew channels, as can be best seen in the 
center of the image where the view goes through 5 of the interlocked pyramidal 
layers (Fig. 7.1(a)). The normal indentation depth for the phase transition onset 
hkink and FNkink are the least of all studied cases and the required work down to 
the transition onset force is lower than with the other surfaces. Furthermore, Fig. 
7.2 shows four of the eight 35˚ skew side structures around the cube corner 
under (011). In that case only comparatively small channels are available all 
around the cube corner. Therefore, the exothermic phase-transition is produced 
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in a highly concentrated manner. This does not cost much displacement energy. 
It just detracts least from the transition energy, leaving more for it. 

 
 

Fig. 7.1. Surface projections on α-quartz with four different tetrahedrons 
upon each other in the center areas; (a) (011); (b) 010); (c) (1−10); (d) (101); 

the bar corresponds to 5 Å length 
 

 
 

Fig. 7.2. α-Quartz 35˚ skew side faces under the (011) surface ; (a) rX 35˚; 
(b) rX −35˚; (c) rY 35˚; (d) rY −35˚ 
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Fig. 7.3. α-Quartz 35˚ skew side faces under the (010) surface; (a) rX 35˚; (b) 

rX −35˚; (c) rY 35˚; (d) rY −35˚ 

 
Consistently, the least exothermic transition energy among the tested surfaces is 
produced under the (010) surface (entry 2) with −11.0485 µN nm / µN. It exhibits 
straight channels (Fig. 7.1(b)). The penetration down to the phase transition 
onset is deep and the required onset energy from FNkink is high (Table 7.1). The 
cube corner is surrounded by large 35˚ skew faces with almost orthogonal 
channels that are well shaped for the transport of materials (Fig. 7.3). Such 
materials transports cost energy, which detracts from the exothermic transition 
energy. This certainly helps to understand the reasons for the extremes under 
the (011) and (010) surfaces. Consistently, the normalized transition energies 
(under (1−10) and (101) indentations (entries 3 and 4) are between these 
extremes. They penetrate almost with the similar depth of entry 2 and their 35˚ 
skew side walls (not shown here) are less favorable under (011) and (010). Thus, 
their normalized Wtrans values are almost equal and between the extremes (Table 
7.1). Clearly, the complicated variations of the normalized anisotropic transition 
energies require the whole anisotropic 3D packing of the crystal. All qualities 
of Table 7.1 interact. This has to be taken into account for all crystals and other 
non-isotropic materials. 
 

7.4 CONCLUSION 
 

The universal Equations (7.1)-(7.7) are physically and mathematically deduced 
beyond any doubt for vertical indentations with self-similar indenters [8,10]. All 
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depend on the physical exponent 3/2 on h rather than on the assumed exponent 
2 that requires iterations with violation of the first energy law. The now possible 
detections of phase transition onsets and phase transition energies are 
indispensable for the characterization of materials and proper analyses of 
indentations. They are of theoretical and practical importance. Their 
unprecedented anisotropy deserves consideration with further crystals, not 
uniform materials, and composites for a better understanding of their failures. 
Numerous further studies on those lines are therefore essential. We used the 
iteration-less physical analysis of common normal force-depth parabolas not only 
for data checks, but also for the detection of phase transitions under load. These 
include the most cited force-depth curves in [3]. Unfortunately these data of 
Oliver Pharr were taken as the basis for ISO14577, without knowing of their force 
calibration errors and the further errors in the absence of the physical data check 
possibilities from Equation (7.1). Their definition of HISO and Er-ISO does not 
consider phase transitions under load and they violate the first energy law. For 
example [24] fitted the incorrect data for aluminium and tungsten, and others 
continued with fitting of loading curves without considering initial effects, phase 
transitions, and other particularities. All of these errors with iterations since 1992 
must be corrected with physically sound analyses. We tell here how the various 
and obvious errors of the iterative indentation treatments are avoided: the closed 
formulas (7.1)-(7.7) for the calculations are presented and used at characteristic 
examples. They rely on excellent linear correlations, contain the corrections for 
initial effects, and do not violate the first energy law. Unfortunately, there was no 
other protest against the first energy law violation for 70 years, even though the 
remaining pressure for elastic moduli and long-range plasticization were always 
known and discussed. Surprisingly enough, it was not asked from where the 
necessary force and energy might come from. We continue to urge ISO for 
changing its 14577 Standard, so that the very common phase transitions upon 
indentations do not longer stay undetected, etc. It is certainly good scientific 
practice to consider the physically enforced formulas (7.1)-(7.7). Their perhaps 
most important advances are the unprecedented applications of nano-, micro- 
and macro-indentations without violating the first energy law. We cannot live with 
[3] and ISO followers who still want to “produce” the pressure plus plasticization 
work from nothing. Only the iteration-free physical formulas are able to obtain 
reliable materials’ properties, including the phase transitions and their energies 
under load. That applies to crystalline, amorphous, and plastic materials under 
mechanical stress that must always be smaller than the phase transition stress 
for avoiding failure of materials in daily life, not to speak of liability problems. 
Clearly, first order phase transformations produce polymorph’s interfaces that 
increase the probability for cracking [14]. Reversibility of phase transitions upon 
pressure release is more likely for the endothermic transitions than for 
exothermic ones. It has already been shown that the activation energies of phase 
transitions can be obtained by temperature dependent indentations with their 
phase transitions [15]. So this appears particularly important for the choice of 
proper materials that are stressed by both load and temperature. That will be 
particularly important for the field of super alloys [10]. Such measurements are 
easily and cheaply available with presently existing instrumentation. 
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ABSTRACT 
 
The ISO standard 14577 is contested due to its iterative processes, violation of 
the energy law, and incorrect relationships between the normal force (FN) and 
impression depth (h). The solution of this dilemma is the use of sacrosanct 
simplest calculation rules for the loading parabola (now FN = kh

3/2
) giving straight 

lines for cones, pyramids and wedges. They provide the physical penetration 
resistance hardness k with dimension [Nm

-3/2
] upon plotting and allow for non-

iterative calculations with closed formulas, using simple undeniable calculation 
rules. The physically correct FN versus h

3/2
 plot is universally valid. It 

distinguishes between the most typical surface effects and makes gradients 
visible. Unmatched precision is provided, including reliability analyses of 
experimental data. A regression study of the FN vs h

3/2 
graphs demonstrates that 

the transition-energy coincides with the beginning of the kink-unsteadiness phase 
transition. All types of solid materials, including salts, silicon, organics, polymers, 
composites, and superalloys, are shown to exhibit this. The abrupt phase-
transition onsets and transition energies offer unheard-of most crucial material 
properties that are essential for safety. As a result, ISO ASTM is requested to 
modify ISO 14577 in its entirety and to develop new standards for mechanically 
(and thermally) stressed materials. For instance, materials must only be admitted 
for maximal forces considerably below the first phase-transition commencement, 
and the consistency of the first phase-transition parameters must be controlled. 
These onset loads can now be calculated with ease. Even nevertheless, 
persistent arguments against the physical analysis of indentations are based on 
severely inadequate understanding of fundamental mathematics and mistakes. 
The properties of the current nonphysical materials are reviewed with regard to 
their effects on safety.  
 

Keywords: Energy law violation; ISO-14577 challenge; calculation rules for 
indentations; phase-transition onset and energy; multiple transitions; 
safety problems. 

 

8.1 INTRODUCTION 
 
We have been working since the early 2000s to persuade the American division 
of ASTM (American Society for Testing Materials) and ISO (International 
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Organization for Standardization) to rectify their ISO 14577 standard. This 
standard requires the entire field of materials sciences to analyze (nano) 
indentation curves. Contrary to experiment, a conical or pyramidal indentation 
must not pierce a projected or iterated contact area with a violation of the first 
energy law. The diamond indentation rather creates the semi-angle dependent 
volume of the cone or the pyramid (but not with a pseudo cone angle) that is 
geometrically well known and available from all indentation compendia. A 
pyramid volume was also falsely calculated using an "effective cone angle," 

which is unfortunately frequently used in indentation compendia that must not 
be used any further. Therefore, the mathematic calculation is compelling for 

the loading parabola that relates the force with the depth
3/2

. The physically and 
mathematically founded deduction of the parabola exponent 3/2 with the linear 
FN versus h

3/2
 plot is thus universally proved. It needs only the use of basic 

calculation rules that are sacrosanct to everybody. Any deviations from the 
exponent 3/2 of the loading parabola are thus experimental errors. Materials with 
gradients are no exceptions. They still require exponent 3/2 on h: tangents to the 
loading FN versus h

3/2
 plot (instead of straight lines in that case) provide the 

physical hardness (k-values) depth-dependent, which will also be valuable in 

these cases, as discussed in [1] for an ion implantation. The calculation rules are 
taught in public and private schools and cannot be argued against. Universal 
facts ensue throughout. Scientists, teachers, anonymous reviewers, editors, 
technicians, Certification Agencies, etc. must urgently stop with their believing in 
their errors of [2,3,4] and of ISO 14577. Their basic errors are the false exponent 
2 on h and their violation of the first energy law. ISO etc. are still continuously 
exacting worldwide agreement. Actually, they think that the undisputed elastic 
and plastic deformations upon indentation can be created from nothing since 
1939! Clearly, as the force-depth loading parabolas do not proceed with h

2
, as 

erroneously proposed since 1939 by Love [2], 1965 Sneddon [3], 1992 Oliver-
Pharr [4], ISO 14577, etc., their ISO-hardnesses and ISO moduli are multiply 
fitted and iterated but not calculated. Conversely, diverging empirical results were 
finally published since 2004 [5] and 2005 [6] after various preceding international 
lectures. The mathematically proved exponent 3/2 on h (Equation (8.1)) [7] that 
experimentally correlates excellently (R

2
 > 0.999 - 0.9999) had the advantage to 

physicochemical correctly identify and remove the various surface effects 
(including tip rounding). Importantly, it also detected phase-transitions with their 
onset data. But strange resistance arose against the iteration-less calculations. 
And surprisingly, this did not change after the break-through, when elementary 
calculation rules quantified the universal fraction of applied energy that is 
responsible for the elastic plus plastic deformations with mathematical precision. 
We apply 20% of the applied work and use the proved exponent 3/2 on h. But 
33.33% violation is still tolerated by using the false exponent 2. Only the proved 
calculation settles the violation of the energy law with the factor 0.8 (Equation 
(8.4)), but it is strictly connected to the exponent 3/2. This could again only be 
published after a large delay in 2013 [8]. It allows now a distinction between the 
applied work (by the instrument) and indentation work (the work for the vertical 
impression) when using the proved correct exponent (Equation (8.4)). The final 
universality of the exponent 3/2 was mathematically proved with the most 
important, particularly elegant and straightforward one-page physical deduction 
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[7]. It used only simple mathematical equations but could only appear with delay 
in 2016 [7]. These calculations proved the validity of the earlier amply verified 
empiric results and opened unprecedented new horizons with the first physical 
hardness that is the penetration resistance k [1]. Unfortunately, the undeniable 
calculation rules are still not widely appreciated, and the necessary 
standardization is certainly difficult for ISO ASTM for various non-scientific 
reasons, not to forget the liability. Some updates in this area are available 
elsewhere and may find attention of the readers [9-11]. Paper [9] deals with 
cyclic indentation of steel but still on the iterative ISO-14577 basis. [10] indents 
onto heterogenous areas of cements also still on the iterative ISO-14577 basis 
and applies statistical techniques. [11] uses the physical indentation analyses 
and is the Chapter 10 of this E-Book. 
 

The author’s very successful non-iterative plots (FN against h
3/2

, Equation (8.1)) 

were unduly scolded as “Kaupp-fitting” [12] and must therefore now be called 
“Kaupp-plot” for not being mixed up with any “fittings”, and as nobody else used it 
before. Such physical and precise plotting of the regression lines (correlations of 
always >0.999 - 0.9999) of hundreds of materials after the competent elimination 
of initial surface effects detected numerous phase-transitions by kink 
discontinuities separating two linear branches with different penetration 
resistance slopes k1 and k2 (mN/µm

3/2
) (physical hardness). This culminated in 

the determination of the first phase-transition energies [8] and, temperature 
dependent, phase-transition activation energies [13]. 
 

As the still exacting of false exponent 2 on h by ISO 14577 cannot reproduce 
experimental loading parabolas, people tried with “excuses” by exponent fittings, 
polynomial and least squares iterations. Hardness was defined as FN over 
projected or iterated areas because the false exponent 2 on h was not removed 
[4,12]. Unbelievably, authors, anonymous reviewers, editors, ISO-ASTM, and 
Certification Agencies did not even try to think about getting out of their mess 
with their unbelievable violation against the energy law. The present author was 
therefore forced to point it out in a more drastically way [14]. The exponent 2 was 
also defended by the prescription to start the analysis of loading curves only 
above a “minimal force value of 30 mN load for all solids” [15]. That means, the 
nano-part of the indentation by analysis of the “power function” should not be 
considered at all in nanoindentations. Or it has been claimed and imaged with 
very short log-log plots (their Fig. 4 in [16]) that the exponent 2 on h would be 
“validated” at high FN values. Such argumentation shows however little expertise 
in basic mathematics: all parabolas FN = k h

n
 loose more and more of their 

flexure at increasing FN for all exponents n. However the k values of parabolas 
depend strongly on the exponent n and even worse, k is not a dimensionless 
constant, but its dimension is [N/m

n
]. The requirement of equal dimension on 

both sides of every equation has been poorly disregarded. The same 
mathematical error is made with exponent fitting: for example [17] fits loading 
curves from zero (not removing the initial surface effect) to various indentation 
depths. He obtains thus very diverse broken exponents (e.g. n = 1.64533, or 
1.75265, or 1.82723, etc. with respective “k-values” of 0.61897, 0.41377, and 
3.0003 × 10

−4
, but without dimensions. Why did the anonymous referees and 

editors of that paper not stop the print of such nonsense? The same paper [17] 
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tried to disprove the Kaupp-plot by totally falsely claiming that “Kaupp” would 
draw a line through three initial points of his initial surface effect (at a tip-rounding 
of 300 nm!) and cut it with the second linear branch extension in his imaged 
Kaupp-plot. But the cited “Kaupp” always eliminated and eliminates initial surface 
effects from regressions and he only considers the kink between the also in [17] 
clearly present first and second linear branches! Another unfair attack against the 
Kaupp-plot was by the above mentioned [12], senior author Durst: these authors 
claim that the Oliver-Pharr [4] and ISO 14577 definition of indentation hardness 
as force over area would “theoretically confirm” the exponent 2 on h and thus 
disprove the Kaupp-plot. How can a definition of an iterated (with a total of 11 
free parameters in two steps) “hardness” be the basis of a physical deduction? 
This is more of a juggler trick but not reasonable or scientific. Again, why did 
anonymous reviewers and editors not reject such publication? Also, finite 
element calculations cannot “confirm” the exponent 2 on h because they 
converge to h

2
, which of course cannot prove anything. Also, any claim that such 

FE-calculations would reproduce experimental results are incorrect, even if such 
claim was made with curves on different pages in the same publication (e.g. in 
[18]). Such a claim was easily disproved by curve analyses in [1]. 
 
Despite such, unfortunately, continuing fights against the iteration-free 
mathematical treatment on the clear-cut physical foundation and mathematical 
proof [7] with closed formulas, the correct analyses opened unprecedented new 
horizons to the indentation technique. One cannot longer exact to the whole 
world a violation of the energy law; and one cannot deny the mathematical 
quantification of the indentation energy that is universally responsible for the 
work of elastic pressure plus all different pressure-following plastic events [8]. At 
the same time one must universally remove the falsifying exponent 2 on h and 
use the proved h

3/2
 for the loading parabola [7]. There is now for the first time a 

physically founded indentation hardness that is the penetration resistance k with 
dimension [N/m

3/2
]. It is simply obtained as the slope of the first regression line 

(Equation (8.1) or Equation (8.2)) always with correlation coefficient >0.999 - 
0.9999) of the Kaupp-plot before the first phase-transition onset. It provides also 
for the first time the checking of the experimental correctness of previous 
calibrating measurements [19]. We provide the easiest and fastest means for 
detecting hitherto unknown phase-transition onsets of materials and for the 
calculation of phase-transition energies. These are unprecedented and the 
subject of this paper. Phase-transition energies have also been calculated at 
different temperatures, which allows for the calculation of the activation energies 
of the phase-transitions [13]. All of that is obtained with closed formulas, never 
using iterations or fittings. Materials can now be qualified for their application 
limits with respect to mechanical and thermal stress, for avoiding catastrophic 
failures in practical use. Examples are materials for various turbine materials in 
airliners, cars, ships, mills, bridges, buildings, roads, etc, etc. Clearly, the sudden 
first type transformations form polymorph interfaces. These increase the 
probability for the nucleation of catastrophic failures [20,21,22]. Their failures are 
generally termed as “material’s fatigue”. But e.g. the mosaic structures of multi-
component superalloys often changes upon continued stress and stress-relief. 
The required constancy of the advanced mechanical parameters can and must 
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now urgently be tested at proper time intervals by indentations with their physical 
analyses. We provide these in this paper from reliable data of salts, silicon, 
organics, polymers, composites, and superalloys. The results are compared in 
Tables 8.1-8.5, including face dependencies and multiple phase transitions. They 
are also discussed with respect to checking a posteriori the reasons for recent 
catastrophic failures to help to avoid them a priori for the future. Indentations of 
the materials are the technique of choice, but only on the basis of the calculation 
rules that disprove the unfortunately still common ISO-ASTM standards 14577. 
 

8.2 MATERIALS AND METHODS 
 
The own measurements were performed with a fully calibrated Hysitron Inc. 
Triboscope

(R)
 Nanomechanical Test Instrument with 2D transducer and levelling 

device, connected to a Nanoscope AFM, using all of about 15,000 data pairs. 
The apex radii of the cube corner (55 nm) and Berkovich (110 nm) diamond 
indenter were directly measured by AFM in tapping mode. The levelling to ±1˚ 
was in x and y direction. Loading times were 30 s up to 10 mN load. Most initial 
data are from digitized published loading curves (Plot Digitizer 2.5.1 
program; https://www.softpedia.com/) up to the microindentation regions with 
about 500 points. It was necessary for avoiding any bias suspicion that had 
sometimes been expressed by anonymous Reviewers. Fittings or iterations 
whatsoever were never performed. The crystal structure models were calculated 
using the Schakal 97 program [23]. The polished strontium titanate samples 
(100), (110), and (111) were from Aldrich Chemical Company. Grade 80 isotactic 
polypropylene was from Imam Khomeini Petroleum Co, Tehran, Iran. 
 

The own or digitized data pairs of FN and h were read into Excel
(R)

 for the 
calculation and print of the Kaupp-plot and calculation of the regressions up to 
and from the at first roughly judged kink position after the cut-off of the initial 
surface effect points. This is exemplified in Fig. 8.1 for aragonite, purposely with 
a larger initial effect than usual. In that case, the surface effect is primarily due to 
hydrated surface twins. The precise kink position is then calculated by equating 
y1 and y2 that contain the slopes k and axis-cuts Fa (Equation (8.2)). The y 

denotes FN and the x denote h
3/2

, while the regression certainties are calculated 
as R

2
. All transition energy values are normalized per force unit for the respective 

polymorph ranges. 
 

We repeat here the evaluation formulas from [19] for convenience. These contain 
all necessary correction requirements that might be necessary and are self-
evident based on the physically deduced Equation (8.1) [7]. The factor 0.8 in 
Equation (8.4) settles the energy law violation [8], but only for the correct 
exponent 3/2 on h (Equation (8.1)). The calculations of the phase-transition work 
were performed with 10 figures to avoid rounding errors. The tabulated values 
were then reasonably rounded. Equation (8.2) is used for interconversions 
between different units of the k-values (physical hardness) and for the values at 
the kink points or end points. This has been exemplified with the data in Fig. 
8.1 that were converted into the units of Table 8.1. 
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 FN = k h
3/2

                                                                                          (8.1)
                                                                              

 

              FN = k h
3/2

 + F1-a                                                                                 (8.2) 

                                                                             

W1-applied = 0.5 hkink (FN-kink + F1-a)                                                               (8.3)
  

 

1-indent 1-applied0.8W W                                                                    (8.4) 

 

   5/2 5/2

2-indent kink 2-a kink0.4W k h h F h h                          (8.5) 

 

applied N-max maxfull 0.5W F h                                                           (8.6) 

 

 transition applied appliedfullW W W                                             (8.7) 

 

The slopes of the different linear branches (Fig.8.1) are the k-values (depth 
independent penetration resistance = physical hardness) with dimension [N/m

3/2
] 

(but not N/m
2
). They are obtained together with the axis cuts (Fa). The initial 

surface effect (water layer, surface treatments, roughness, possible zero-error, 
tip rounding, etc) has to be carefully separated from the desired bulk properties. 
Its detailed elucidation requires separate indentation but at much lower depths 
(here up to 100 µN load). Most metals and semiconductors have hydrated 
oxide/hydroxide (rarely nitride) layers, often despite surface hardening by 
polishing. All of these contribute to Fa and have to be corrected for (Equation 
(8.2), Equation (8.3) and Equation (8.5)), but their varying values are not bulk 
materials constants and are thus not tabulated. 
 

 
 

Fig. 8.1. Kaupp-plot (FN versus h
3/2

) analysis, as exemplified with a 
Berkovich indentation onto aragonite (CaCO3; Table 8.1), showing the 
phase-transition kink unsteadiness onset by the kink and cut-off of the 

initial surface effects that include the tip rounding 

https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#f1
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Table 8.1. Penetration resistance and phase-transition energies of various types of materials (Berkovich), including organics  
 

Material k1 and k2  
(mN/µm3/2

) 

FNmax 
(mN) 

FNkink 
(mN) 

hkink 
(µm) 

Wtransition/mN 
(mNµm/mN) 

Literature for Data Origin 

Aragonite CaCO3 (-110) 39.396 
48.962 

1.0 0.4086 0.04644 0.002758 Kearney, Phys Rev Lett 
2006, 96, 255505 

Calcite CaCO3 (100)a) 17.911 
23.176 

10.0 0.3655 0.08266 0.01599 Guillonneau, J Mater Res 
2012, 27, 2551 

Calcite CaCO3 (100)b) 33.156 
48.943 

40.0b) 11.869 0.4940 0.10692 Presser, J Mater Sci 2010, 
45, 2408 

Sapphire Al2O3 236.05 
267.08 

90.0 34.326 0.2763 0.13453 Page, J Mater Res 1992 7 
450 

Zirconium dioxide ZrO2 134.74 
210.88 

33.0 8.7514 0.1665 0.02828 Zeng, Acta Mater 2001, 49, 
3539 

Tungsten W 95.57 
114.50 

85.0 35.607 0.5525 0.070059 Oliver-Pharr, J Mater Res 
1992, 7, 1584 

InGaAs2 (001) 36.272 
32.477 

2.7 1.2703 0.1070 −0.005380 Kaupp, Scanning 2013, 35, 
392 

Mica, Muscovite KAl2[(OH,F)2/AlSi3O10)] 34.522 
3.566 

50.0 11.556 0.4434 0.01016 Hutchinson, Acta Metall 
Mater 40 295, 1992 

Ce(C2O4)2(CO2H) (001) “MOF” 52.848 
64.907 

20.0 8.0745 0.3102 0.06554 Tan, J Am Chem Soc 2009, 
131, 14252 

Pine latewood radial 0.1342 
0.1705 

1.8 0.5469 2.5625 0.23926 Brandt, Acta Biomater 2000, 
6, 4345 

Pine latewood axial 0.2098 
0.3043 

3.0 0.9631 2.7638 0.36510 ditto 

Saccharin (011)c) 1.9543 
2.3179 

6.0 1.7108 0.9426 0.08293 Kira, Cryst Growth Design 
2010, 10, 4650 

Benzylidene-butyrolactone (010)c) 0.4807 
0.5724 

2.1 1.0634 1.6671 0.07893 Kaupp, Angew Chem 1996, 
35, 2774 

Dea)After initial twinning; b) second transition of calcite; c)cube corner indenter; the organic structures are in Fig.8.2 
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Fig. 8.2 Molecular structures of saccharin and benzylidene butyrolactone 

 
8.3 RESULTS AND DISCUSSION 
 

8.3.1 Various Types of Materials 
 

Phase-transitions upon indentations cover all types of materials and the 
penetration resistances = physical hardnesses) of the two branches in their 
Kaupp-plots (they profit from the physical and mathematical proved Equations 
(8.1)-(8.7). Typical examples are collected in Table 8.1. All units are made equal 
by using Equation (8.2) with the corresponding units. It contains salts, oxides, 
metal, semiconductor, metal organic framework (MOF), polymer composite 
(wood), organic crystals, and the complicated mineral Mica. They cover nano- 
and micro-indentations, using Berkovich or for the organics cube corner 
indenters. The maximal forces are given to indicate the experimentally studied 
ranges. This does not exclude further phase-transitions at higher loads as has 
been shown with NaCl, where 4 phase-transitions (6 polymorphs) had been 
located [20]. Further polymorphs are even likely for calcite, where already two 
phase-transitions (4 polymorphs) are energetically analyzed in Table 8.1 (further 
examples are in Tables 8.3-5). The k-, FN- and hkink-values do not systematically 
relate to their unprecedented transition-works that are normalized per mN of their 
ranges. We did not transform the mNµm or µNnm units into Joules for easier 
transformation possibility into different units. These quantities relate to the 
chemistry of the materials and the transitions can be mostly endothermic but also 
exothermic. It is seen that the less stable aragonite has a lower endothermic 
Wtransition than the calcite polymorph. The second transition of calcite affords 
about 7 times more energy than its first one. Surprisingly, the W transition of the very 
hard sapphire is only 8.4 times higher (at 94 times higher transition onset) than 
the first one of calcite. Furthermore, W transition of sapphire is only 1.6 and1.7 times 
higher than the ones of the organic crystals in this Table 8.1. The latter are 
however extended molecules requiring energy consuming solid-state migrations 
into other polymorph structures, whereas the cooperative transformation of 
Al2O3 from its trigonal space group (R-3c) does not require considerable 
molecular migrations. The proportion of transition energies between Al2O3 (m.p. 
2050˚C) and ZrO2 (m.p. 2715˚C) (4.75 fold) is much higher than the one of 
physical hardnesses k (1.25 fold). This underlines the independence of transition 
energies from such qualities as hardness, or melting point, etc. The high 
pressure polymorphs of sapphire are probably either the orthorhombic (Pbcn) or 
the (Pbnm) polymorph of Al2O3, both with a volume decrease of 3.1% [24], even 
now at room temperature, because of the shearing upon pyramidal indentation. 
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Similarly, monoclinic ZrO2 (P21/c) transforms probably into the denser monoclinic 
polymorph (still P21/c) or the orthorhombic polymorph with (Pbcm) structure, both 
with higher density. The hard metal tungsten (m.p. 3400˚C) has a lower hardness 
than the two oxides, but its transition energy is 2.5 times higher than the one of 
ZrO2, which is quite remarkable. 
 
Surprisingly, the semiconductor InGaAs2 exhibits a significantly exothermic 
phase-transition, and mica (Muscovite) has a very low normalized endothermic 
transition energy, smaller than the two organics. Both of them experience very 
easy phase-transitions and they can only be detected by our iterative-free 
precise technique. 
 
The metallorganic MOF, wood, and organics exhibit phase-transition energies 
that are not very different from the ones of the inorganics. The anisotropy of 
radial or circular pinewood is remarkable. Clearly, the non-iterative technique is 
very sensitive and avoids all of the strange recent techniques that are wiping out 
all of the important information from phase-transitions with incredible data 
treatments. 
 

8.3.2 Bond-Breaking of Polymers 
 

The phase-transitions of organic polymers under mechanical load are initial 
bond-breakings into radicals. This requires relatively high energy if these primary 
cleavage products are not stabilized by substituents. Therefore, their phase-
transition onset must relate to the bond energies of the weakest chain bond. 
Further reactions of the so formed radical pairs are manifold, but overall there is 
hardening by cross-linking, which is well known for the technical treatments of 
polymers, e.g. upon extrusions, etc. Table 8.2 collects the data of some linear 
polymers upon Berkovich indentation. Most of these are highly amorphous and 
their hardnesses (k-values) are low. An exception is isotactic polypropylene it-PP 
with high crystallinity and much higher k-values. This is however not so important 
for the C-C bond strength. It is nicely seen in Table 8.2 that the phase change 
onset (chain breaking) relates to the strength of the carbon-carbon bonds. In the 
case of high density polyethylene (hd-PE) without chain substitution and isotactic 
polypropylene (it-PP) with slightly less efficient methyl-substituents, the strong 
unsubstituted C-C bonds exhibit similar bond energies and thus also similar 
phase-transition energies, much higher than those in Table 8.1. The details with 
kink forces and depths depend only slightly on further properties of the materials. 
Substitution of the polymer chains with phenyl groups as in polystyrene (PS, 1.04 
g/cm

3
) decreases the bond energy, due to stabilization of the radicals, and thus 

also the phase-transition energy is decreased. The methylester groups in the 
side chain of polymethylmethacrylate PMMA (1.19 g/cm

3
) are 13 times more 

effective with decreasing the transition energy when compared with polystyrene 
PS. The hkink of PMMA is 7.7 times lower even though the required onset force is 
6.2 fold higher. But it appears that the elimination of methylformate (HCO2CH3) is 
energetically easier than the chain breakage. Polycarbonate Macrolon

(R)
 (PC) 

contains no C-C breakage chain. But the ArO-C(O)OAr bond (Ar = aryl) is 
cleaved, starting the energetically favorable loss of CO2. This is the largest 

https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#t2
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decrease of phase-transition energy of the polymers in Table 8.2: 145 fold 
decrease of Wtransition when compared with the C-C breakage of PE. The analyses 
of cross-linked polymer indentations promise further interesting insights. 
 

8.3.3 Multiple Phase-Transitions 
 

Table 8.1 contains already the double phase-transition of calcite and it is well-
known that several phase-transitions can occur consecutively at higher and 
higher loads. This has been shown with the depth-sensing macroindentation of 
sodium chloride up to 50 N loads with a Vickers indenter when 4 phase-
transitions were detected. The thus experimentally detected 6 polymorphs 
formed their polymorph interfaces under load with the facilitated production of 
seeds for catastrophic breakages [20]. Further examples have been found by 
analyses of published macroindentations [25]. For example, sapphire has its 
second phase-transition at 12.8 N and 5.82 µm depth (not included in Table 8.1) 
and soda-lime glass has the third transition at 14.0 N and 11.7 µm depth (not 
included in Table 8.3) [1]. Importantly, phase-transitions are, of course, not 
achievable by technical one-point Vickers, Brinell, Rockwell, etc. hardness 
measurements. Interestingly, already microindentations (mN to low N-ranges) 
are a rich but hitherto undetected field of consecutive phase-transitions. Table 
8.3 shows it for the standard materials soda lime glass, aluminium, and silicon, 
the latter on two different faces (another example is calcite in Table 8.1). The 
hend and Wapplied/mN values indicate only the experimental range. The 
undoubtedly amorphous soda lime glass exhibits two endothermic phase-
transitions at the microindentation range (sharp kinks with linear branches in the 
Kaupp-plot) and exists thus in 4 or together with the macroindentation 5 
polymorphic forms, the structures of which are subject to further studies. We can 
only conclude from the absence of cracks or pop-ins that there are different 
degrees of density under load that increases the penetration resistance from 
state to state. The transition energies of the first two transitions of soda lime 
glass vary by a factor of roughly 4, which is quite remarkable. Aluminium requires 
about 12.1 and 60.4 mN load for its first and second phase-transition and its 
proper use as a calibration standard ends already below the values of the first 
one. Some onset-depths are still in a range of nanoindentations. Also the 
transition work for both transitions is similar to the one of much harder sapphire 
and smaller than the ones of pinewood (Table 8.1) and PE, PP, and PS (Table 
8.2). This reflects the weak metallic bonds of aluminium that facilitate 
rearrangements in the crystal lattice. 
 
The transitions of cubic silicon (Ed3m), exhibiting an exceptional pop-out of the 
unloading curve, found more theoretical interest. Several polymorphs (including 
an amorphous phase) were detected by electron diffraction, Raman 
spectroscopy, and electric conductance onset from the loading curve. The 
obtained values from the papers, as cited in [13], are similar to the ones found 
more easily directly from the Kaupp-plot of the loading curve in Table 8.3. 
Particularly helpful in that respect are the in-situ current flow onsets at about 5 
mN of the metallic Si II [26], which agrees with the first kink discontinuity in our 
analysis. This electrical unsteadiness confirms again the first phase-transition 
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onset under the (001) face of silicon. We observe however 3 phase-transitions (5 
polymorphs) from the physical Kaupp-plots (Table 8.3). And the data from the 
two different faces exhibit considerable differences. The first transition is hidden 
at the scales of 50 and 100 mN. It is thus helpful that also a nanoindentation was 
published in [27] for the (001) face. The variation of the 3 endothermic transition 
energies is by a factor of 28 for the (001) indention and there were no pop-ins but 
only “fine cracks emanating from the corners” at 50 mN load/displacement. It can 
be assumed that the boron-doping does not make much difference to the 
mechanical properties of silicon. We can, therefore, compare the (001) with the 
(100) phase. The five polymorphs of the silicon in the loading curve up to 50 mN 
load have been located for the first time together with the energetic information. 
The striking differences in the endothermic phase-transition energies at the 
different faces require a crystallographic understanding. This can be obtained by 
considering the crystal structure, similar to the procedure, as developed in 
[19]. Fig.8.3 compares the different surface structures. It shows the two probed 
surfaces of silicon. The channels under (001) are slightly smaller than the ones 
under (100). That explains the deeper onset penetration under (100), but it 
cannot explain the differences in the corresponding transition onset forces FN-

kink and the phase-transition energies Wtransition. We have thus to consider how the 
Berkovich indenter with its skew faces at the face angle (semi angle θ = 65.3˚) 
interacts orthogonally with the interior of the crystal at the opposite angle, due to 
the penetrated Berkovich. The equally skew face structures around the Berkovich 
are calculated by rotations from the indented face by rx ± 65˚ and ry ± 65˚. This 
models 8 opposing skew faces because the corresponding rotations around 245˚ 
and 115˚ are mirrored or doubly mirrored. Fig. 8.4 and Fig. 8.5 image the striking 
differences. Fig.8.4 under (001) exhibits large channels for migrations that 
facilitate the phase changes. Clearly, that makes them less endothermic. 
Conversely, in the correspondingly calculated Fig.8.5, under (100) one observes 
3 blocking (a, c, d) opposing faces and only one (b) with channels. Clearly, the 
migrational possibilities are more impeding under (100). The phase-transition and 
the endothermic result are thus considerably higher, as has to be expected. 
 

 
 

Fig. 8.3 View onto the two indented crystal surface structures of silicon 
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Table 8.2. Phase-transition onsets and energies of linear polymers upon indentation 

 
Polymer k1 and k2 

mNµm3/2 
FN-max 
(mN) 

FN-kink 
(mN) 

hkink 
(µm) 

Wtransition/mN 
mNµm/mN 

Bond energy 
(kJ/mola)) 

Literature of data origin 

hd-PE 0.65776 
1.08782 

1.0 0.3247 0.6299 3.0159 363.2 This work 

it-PP 11.030 
14.001 

3.0 1.8840 0.3064 3.1463 362.3 This work 

PS--6C 0.02955 
0.04303 

0.450 0.1243 2.6202 0.5401 272.8 CSM Webinar 
14.02.2010 

PMMA 4.0252 
4.9629 

1.6 0.7758 0.3422 0.04116 n.a.b) Brisccoe, Appl Phys 
1998, 31, 2315 

Cast PC 2.6385 
3.3079 

1.10 0.3779 0.2713 0.02083 Loss of CO2 ditto 

a)86th Handbook of Chemistry and Physics, CRC Press, 2006; b)not available, probably loss of the side group rather than chain breakage 
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Table 8.3 Multiple phase transitions of soda lime glass and silicon upon Berkovich indentation 

 
Material k-value 

mNµm3/2 
hkink (µm) FN-kink (mN) Wtransition 

mNµm/mN 
Origin of Data 

Soda Lime Glass 77.909 
105.28 
122.01 

0.4925 
0.7739 
1.1173a) 

23.6782 
58.9005 
up to 120 mN 

0.1173 
0.4744 
0.6228b) 

Oliver-Pharr 1992, J Mater 
Res 7, 1584 

Al (only the experimental) 9.7181 
11.613 

1.2105 
2.0997a) 

12.1330 
up to 32 mN 

0.1418 
1.2095b) 

K. Zeng, Acta Mater 2001, 
49, 3539 

Al (only data up to 90 mN) 12.036 
13.377 

3.1086 
3.8963a) 

60.4343 
up to 90 mN 

0.2230 
2.4958b) 

Oliver-Pharr 1992, J Mater 
Res 7, 1584 

Si (001), B-doped, p-type 112.14c) 
121.75 
155.62 
160.62 

0.1501 
0.2522 
0.3309 
0.4917a) 

6.5328 
15.2899 
25.2002 
up to 50 mN 

0.00687 
0.02687 
0.1942 
0.3014b) 

T.F. Page, 1992, J Mater 
Res 7, 450 

Si (100) 123.2 
145.44 
151.53 

0.4077 
0.7245 
0.81968a) 

29.1622 
81.0015 
up to 100 mN 

0.1545 
0.4684 
0.5659b) 

S.V. Hainsworth 1996, J 
Mater Res 11, 1987 

a)hend (µm); b)final Wapplied/mN; c)k2 = 124.80 from a separate measurement up to 11 mN after cut-off of the initial effect at 1 mN, including the hydrated oxide layer 
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Table 8.4. Face-dependent phase-transition onsets and transition energies of α-iron and strontiumtitanate 

 
Material k1 and k2 

µN/nm3/2 
Indenter hkink 

nm 
FN-kink 
µN 

Wtransition 
µNnm/µN 

Data Origin 

Fe (100) 0.3590 
0.2618 

Cube Corner 103.0337 461.9156 −40.0372 Smith, Phys Rev B2003, 67 
245405 

Fe (110) 0.2332 
0.1986 

Cube Corner 109.0949 358.9707 −33.5112 ditto 

SrTiO3 (100) 3.0436 
3.7145 

Berkovich 69.7824 1738.2160 6.489 Kaupp, Scanning 2013, 35, 
392 

SrTiO3 (110) 2.5217 
3.3841 

Berkovich 65.7308 1355.4438 7.020 ditto 

SrTiO3 
(111) 

2.7591 
4.0878 

Berkovich 102.8636 2860.4600 14. 821 ditto 
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Table 8.5 Unprecedented phase-transition qualities of γ-TiAl and various superalloys 

 
Material max. FN 

µN 
k1,k2 and k3 
µN/nm3/2 

hkink; hend 
nm 

FN-kink 
µN 

Wtransition 
µNnm/µN 

Data Origin 

γ-TiAla) 3000 0.3213 
0.4353 

312.100 1787.7591 25.0885 Zambaldi 2010, 
Acta Mater 58, 3516 

Zr41Ti14Cu12.5Ni10Be22.5
a) 

Vileroy105 
500,000 0.90332 

1.14282 
2532.967 107,930.106 291.4861 Moser 2006, Phil Mag 86, 

5715 

Fe43Cr16Mo16C15B10 (I)
b)  7.21378 

9.54375 
505.499 
1021.109 

74,517.819 87.3435 Li, Intermetallics, 2007, 15, 
706 

Fe43Cr16Mo16C15B10 (II)
c) 300,000 11.64109 2532.967 176,653.607 176.2607 ditto 

Mg65Cu25Gd10
b) 62,000 1.53921 

1.93759 
846.241 36,893.360 105.5932 ditto 

Cu60Zr30Ti10(I)
b)  2.1803 

2.6791 
158.674 
245.244 

4056.1699 21.9236 Jiang, Mater Sci Eng, 
A2006, 430, 350 

Cu60Zr30Ti10(II)
c) 18,000 2.8397 366.2825 8999.645 141.8416 ditto 

a)Cube corner; it appears likely that there might have also been some Vanadium in that sample; b)Berkovich; c)Second transition 
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Fig. 8.4 Silicon skew faces as obtained by the rotations from (001); (a) rx = 

65˚, (b) rx = −65˚, (c) ry = 65˚, (d) ry = −65˚ 

 

 
 

Fig. 8.5. Silicon skew faces as obtained by the rotations from (100);                
(a) rx = 65˚, (b) rx = −65˚, (c) ry = 65˚, (d) ry = −65˚ 

 

 
8.3.4 Further Face-Dependent Phase-Transitions 
 

The multiple phase transitions of silicon (Berkovich) are also face specific and 
this is described in detail in Section 8.3.3, Table 8.3 and Figs. 8.3-8.5. Also, the 
anisotropic single exothermic phase-transition energies of α-quartz (cube corner) 

https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#t3


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
An Advance Study on Physical Nanoindentation: From Penetration Resistance to Phase-transition  

Energies 

 
 

 
117 

 

on four different faces have already been analyzed for crystallographic reasons 
and reported in [19]. All crystalline materials must have different phase-transition 
energies under different faces. Further typical examples are with bcc α-iron 
(ferrite, Im3m) under two faces and with strontium titanate perovskite type 
(Pm−3m) under three faces (Table 8.4). These measurements require the high 
precision that is only available with the physical regression analysis without 
iterations or data fittings. 
 
The crystal of α-iron on (100) and (110) exhibits different exothermic phase-
transition values. For strontium titanate with three endothermic phase-transition 
energies, two of them have closer together values, but the lowest and largest 
values are far apart. This is again not consistently reflected by the different onset 
forces and onset depths (Table 8.4). The reasons are the different crystal 
packing, similar to the reasoning with silicon (Table 8.3) and α-quartz in [19]. The 
understanding of the exothermic phase-transition of α-iron rests again on the fact 
that the penetrating pyramid interacts orthogonally with its opposing skew face at 
the semi-angle, which is θ = 35.26˚ for the cube corner. A rotation from the 
surface faces around x and y by ±35˚ yield these skew surfaces. The eight by 
35˚inclined faces around the three-sided indenter pyramid are completely 
represented with only two images for symmetry reasons of the bcc cubic crystal 
under (100) (Fig. 8.6) and under (110) (Fig.8.7). This facilitates the 
understanding of the differences for crystallographic reasons. 
 
The crystal face on (100) and the skew faces under it in Fig.8.6 under (100) 
stand for the higher exothermic phase-transition of α-iron. The cube corner 
opposes all of the eight faces almost orthogonally that are devoid of channels. 
That means, there is no energy lost by the migration of phase transformed 
material. The gained exothermic energy remains highly negative. 
 
Conversely, Fig. 8.7 with Fe on (110) with the lower exothermic phase-transition 
energy shows the skew faces by rotations of ±35˚ from it. Four of the eight exhibit 
open channels orthogonally to the indenter. Therefore, part of the gained 
transition-energy is used up for migration of the phase transformed material, 
leaving less of the gained energy by phase-transition. The channel face is here 
fortuitously the {111} faces across the crystal. Only the other four faces impede 
migrations. 
 
The analogous analysis has been successful with the exothermic phase-
transition of α-SiO2 with cube corner in [19], where 4 different faces were studied: 
the absence of channels retains exothermic negative transition energy. 
Everything is thus well understood by the straightforward analysis in the case of 
exothermic phase-transition. 
 
As already shown for the endothermic phase-transitions of silicon in Section 3.3, 
the analysis of the strontiumtitanate using Berkovich with θ = 65.3˚ is equally 
successful (not imaged here, due to many images that are required). The 
minimal endothermic work (6.5 µNnm/µN) is required under (100), where 
channels are available on the skew faces to facilitate the conversion. Conversely, 
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under (111) the strongest endothermic energy (14.8 µNnm/µN) is observed, as 
there are no channels at the skew faces that enforce the transition to stay 
blocked in space, which increases the endothermic work. Consistently, under 
(110) the value (7.0 µNnm/µN) stays between the extremes, as there are some 
smaller channels allowing for minor migration of the transformed material. Again, 
channels facilitate migrations for the endothermic phase-transitions and decrease 
the endothermic work. When migrations are blocked more work is required for 
the phase-transition. The face-dependency of phase-transition energies is thus 
well understood by crystal structure analysis. 
 

 
 
Fig. 8.6. The α-iron (100) face and those as obtained by rotations from it by 
rx = 35˚ and ry = 35˚, modelling all eight skew surfaces that surround the 

penetrated cube corner indenter for symmetry reasons, leaving no 
channels for migrations 

 

8.3.5 Phase-Transition Energies of Superalloys 
 

The sudden first order sharp phase-transitions form polymorph interfaces that are 
shifted away from the indenter after their onset when the load increases. These 
polymorph interfaces are preferential sites for the nucleation of large far-distant 
cracks. This has already been imaged in connection with the multiple 
consecutive phase-transitions of sodium chloride in [20]. These circumstances 
are most important for the occurrence of catastrophic failures of superalloys at 
work. Clearly, polymorph interfaces must be avoided with materials under 
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mechanical and thermal stress. We must therefore urgently look for phase-
transition onsets and transition energies of published loading curves of some 
superalloys (also called entropic alloys). This shall convince industries that they 
must complement their Vickers, Brinell, Rockwell, etc. hardness measurements 
with physical depth-sensing macroindentations’ control. Only these provide the 
necessary phase-transition information. The problems might occur primarily after 
multi-1000-fold load and unload both mechanically and thermally. The thermal 
stress calculation requires the activation energy of the phase-transitions that can 
also be obtained by physically correct temperature dependent indentations [13]. 
The transition energies W trans in Table 8.5 are purposely given in µNnm/µN units, 
in order to show that such phase transformations can also here occur at 
comparatively low loads and depths. There were no “pop-ins”, which could 
disqualify the alloy’s use beforehand. However, these published examples do 
certainly not represent alloys that are in practical use, as the actual alloys are 
secret and only available to the industrial personnel. 

 

 
 

Fig. 8.7. The α-iron (110) face and those as obtained by rotations from it by 
rx = 35˚ and ry = 35˚, modelling by symmetry all eight skew surfaces that 

almost orthogonally surround the penetrated cube corner indenter, four of 
them (here fortuitously {111}) with open channels for migrations 

 
Table 8.5 starts with the 68/32 γTiAl alloy, because a propeller blade close to the  
turbine each out of a “titanium-aluminium alloy” or an "Al-Li-alloy" from 2 identical 
airliners broke away, during flight within one year in 2017 and 2018. Both blades 
hit the body of the airliners, unfortunately killing a woman passenger. The  alloy of   
publicly  unknown  composition contained  certainly  several other components.  
The  data  of Table  8.5 show however  comparably  low  force  and energy values 
for the phase-transition of the Al alloy base. It is seen: the way for  obtaining  high  
enough phase-transition  onset  and  endothermic  transition energy for a good Al 
alloy must probably have been too long. It appears important to study the Al-Li- 

 

https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#ref10
https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#t5
https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#t5
https://www.scirp.org/journal/paperinformation.aspx?paperid=93326#t5


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations An Advan
ce Study on Physical Nanoindentation: From Penetration Resistance to Phase-transition energies     

120 
 

 
 

 alloys with respect to their phase-transition properties. The other alloys of Table             
8.5 exhibit much higher values, but these alloys are certainly not the secret alloys 
for airplanes. There are means to engineer alloys by trial and error with ductilizer.                                                                                                                                                                                                                                                                                      

                           

 
for airplanes. There are means to engineer alloys by trial and  Ductilizers give  for  example  by  oxide  dispersion  strengthening  ODS-super- 

alloys  with  Y2O3,  ThO2,  La2O3,  Al2O3,  etc.  [28].  Also,  carbon  and  further 
materials have been widely used as additives. Here is now the still not industrially 
used  (legal  ISO-ASTM  standard  certification!)  more  systematic  way  to  improve 
superalloy compositions for best performance. All what’s required is the easy and 
reliable  physical  indentation  analysis  with  respect  to  phase-transitions.  The 
hardness of materials is again a poor guide for judging the phase-transition onset 
force  ranges  and  the  phase-transition  energies.  For  example,  the  by  far  best 
alloy  in Table  8.5 is  Vileroy-105  with  a  comparably  low  hardness  (k1=  0.90332 
µN/nm

3/2
 or with other units 29.652 mN/µm

3/2
) that are much smaller than those 

of  Fe43Cr16Mg16C15B10 (k1=  7.21378  µN/nm
3/2

 or  with  other  units  228.12 
mN/µm

3/2
), while the Wtransition ratio is 291/87, respectively. The Newton-range is 

almost reached with Vileroy-105. Its first transition is at highest force and also the 
transition  energy  is  highest,  whereas  the  well-known  iron-based  superalloy 
surmounts the kink force only at its second phase-transition but with much lower 
transition energy. The magnesium based alloy is inferior and the copper-based 
alloy has two phase-transitions at still lower forces and transition energies. 
 
The here achieved maximal loading forces (0.5 N, corresponding to HV 0.05) are 
at or below the lower level of industrial Vickers, Brinell, Rockwell, etc. hardness 
measurements. These are certainly highly standardized by ASTM, but unable to 
detect  phase-transitions.  It  is  to  be  expected  that  further  as  yet  undetected 
phase-transitions will occur at the much higher loads (for example from Vickers 
hardness HV 0.5 to HV 10) in all cases. 
 

The field of superalloys for technical constructions is widespread and extremely 
important, and so is the improvement of the stability of superalloys when being at 
work. Any alloy must only be admitted to forces below its first phase-transition 
onset.  Both  the  onset  force  and  the  transition  energies  must  be  as  high  as 
possible. We  present  here  a  simple  systematic  way  to  improve  the  engineers’ 
efficiency,  but  this  depends  on  the  profound  change  of  the  present  ISO  and 
ASTM standards that are the basis of the manufacturer’s certification. Physical 
mathematically proved standards must be urgently created, edited, and enforced. 
Present  ISO-ASTM  hardness  or  indentation  moduli  are  not  physical  quantities 
and they are unsuitable for the safety. Their biggest flaw is their inability to detect 
or even know of phase-transitions under load. The here described improvements 
are, of course, worldwide indispensable, but unfortunately not easily achieved for 
various unscientific reasons. 
 

8.4 CONCLUSION 
 

We  showed  here  that  undeniable  sacrosanct  basic  calculation  rules  prove  the 
physically  founded  Equation  (8.1)  [7]  for  pyramidal  (or  conical)  indentations. 
These lead to the detection and energetic characterization by calculations with 
proof  of  the  universal  evaluation  formulas.  Phase-transition  onset  and  phase-
transition energies have been calculated across all material types. These include 
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multiple transformations and surface dependent ones at various load conditions. 
Special effects are detected and corrected because bulk qualities are aimed at. 
Instrument builders are urged to offer the corresponding software for automatic 
calculation of these quantities. It is impossible to judge the ranges of phase-
transition onset forces and energies from hardness and elastic moduli that violate 
the energy law [14,21,22]. The wrong exponent 2 on h and the violation of the 
energy law are intolerably incomprehensible and must be pitiless rejected. The 
whole world should no longer be forced to assume that the elastic pressure 
deformation plus all of the pressure induced plastic deformations can be obtained 
from nothing. The presented measurements indicate again that phase-transitions 
of materials under mechanical or thermal stress facilitate catastrophic breakages 
[20]. ISO and ASTM must thus normatively require the detection of the onset and 
transition energies for all technically used materials. And for safety reasons, 
admission of all materials must be restricted to forces (temperatures) well below 
their first phase-transition. For thermal stress, the activation energy of the first 
phase-transition [13] must be calculated and its constancy after the long running 
routines equally secured. The ISO 14577 standard must urgently be changed. In 
the meantime, Certification Agencies must stop using ISO 14577 for the 
certification procedure of industrial companies. Only that stopping will enable 
them to perform the required use of the calculation rules with depth sensing 
(macro) indentations for the search of phase-transition onsets and energies. This 
is, of course, additionally required after the standard stretching and bending tests 
for all materials. It will also be necessary upon the legally prescribed 
maintenance routines and particularly for a posteriori tests after the recent 
catastrophic events of e.g. broken off propeller blades in front of turbines, etc. It 
will clarify the reasons and avoid further risks with replaced materials for safety 
reasons. This paper shall help in that endeavor. Future research must also 
routinely include reliable low and very low-temperature indentations of technical 
materials to search for embrittlements (no pile-up allowed) and additional low-
temperature phase-transitions. First examples at −63°C [29] and −113°C [30] are 
already available, but the proved mathematical analyses were not used. We try 
cooperation at an applied instrument with such capabilities and continue with 
worldwide lecturing on this important subject. 
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ABSTRACT 
 

The  goal  of  this  paper  is  to physically  deduce  the  loading  curves  for  spherical 
and  flat  punch  indentations,  especially  since  the  one  exponent  parabola 
assumption appears to be impossible for not self-similar spherical impressions. 
By taking into account the work done by elastic and plastic pressure work, these 
deductions avoid the still common first energy law violations of ISO 14577.  The 
misleading  though  hitherto  generally  accepted  “parabolas”  exponents  on  the 
depth h (“2  for  cone,  3/2  for  spheres,  and  1  for  flat  punches”)  are  still  the 
unchanged basis of ISO 14577 standards that also enforce the  (false for cone 
and  sphere)  up  to  3  +  8  free  iteration  parameters  for  ISO  hardness  and  ISO 
elastic indentation modulus. Since the elastic and inelastic pressure work cannot 
be created out of nothing, almost all of these common practices are now refuted 
by physical mathematical proof of exponent 3/2 for cones, which also dispels the 
myths  about  indentation  against  a  flat  projected  surface  (contact)  area  with 
violation of the first energy law.  The impression of a volume that is associated 
with  pressure  formation,  which  results  in  elastic  deformation  and  a  variety  of 
plastic deformations, is physically accurate. Only the loading parabola for cones, 
pyramids, and wedges follows the exponent 3/2.  It appears impossible that the 
geometrically not self-similar sphere loading curve is an h

3/2
 parabola. Hertz did 

only deduce the touching of the sphere and Sneddon did not get a one-exponent 
parabola  for  the  sphere. The  radius  over  depth  ratio  is  not  constant  with  the 
sphere.  The  sole  exponent  3/2  on  h  (Johnson’s  formula)  for  the  spherical 
indentation  loading  curve  does  not  hold  up  against  the  ostensibly  strong 
correlation of such parabola graphs at large R/h ratios and low  h-values. Such 
graphs  do  not  represent  the  sphere  physically,  and  so,  attempted  regression 

results point to data manipulations using at least one published data fitting 
formula. Unbiased algebraically we now deduce with the exponential factor h

3/2 

and a depth-dependent dimensionless correction factor containing the R/h ratio 
as  result  the  closed  physical  formula  for  the  spherical  indentations.  Even  with 
huge radius/depth-ratios at the shallow indents, the h

3/2 
against force plot utilizing 

published data is concavely bent.  Thus, the benefits of conical, pyramidal, and 
wedged  indentations  are  negated.  For  experimental  nano-  and  micro-
indentations, these details are listed. Spherical indentations showing linear data 
regression for force versus h

3/2
 plots do not agree with physical reality. They are 

 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
The Loading Curve of Spherical Indentions is Not a Parabola and Flat Punch is Linear:  

Scientific Explanation 

 
 

 
126 

 

useless and reveal the data-fitting. This emphasizes the need for simple 
deductions of the right relationships based on indisputable calculation 
procedures and indisputable fundamental physical knowledge that don't require 
fitting or iteration. Therefore, in addition to formulas for the physical indentation 
hardness, indentation work, and applied work for these indentations, the simple 
physical deduction of the flat punch indentation is also supplied. A 
macroindentation serves as an illustration.  
 
Keywords: Closed formula for spherical indentation; CHALLENGE OF 

ISO14577; mathematical proofs; volume instead of area; correct flat 
indentations; physical indentation hardness; hardness dependence 
on indenter shape; data treatment detection. 

 

9.1 INTRODUCTION 
 
The two-dimensional handling of the three-dimensional impression into solids is 
the most serious fallacy in the powerful (nano) indentation sector. Since 1992, 
this practice has gained widespread praise on a global scale. The force-depth 
curves for conical and spherical indenters, respectively, are still viewed as 
parabolas with the exponents 2 and 3/2, and serve as the foundation of ISO 
14577 [1,2,3]. It seemed to be an unbreakable norm for indentations. This 
misleading hypothesis is “supported” and widely accepted in academia [1], 
textbooks [2], and business [3]. Despite being aware that the spherical 
indentation is not "geometrically self-similar," they continue to utilize a "parabola 
with exponent 3/2 for spheres" (ratio of impression radius or diagonal over depth 
is not constant). Furthermore it is used for defining the size of their always used 
correction factor “ε” [4], for their iteration of the projected contact area according 
to the work by [1], and by ISO 14577 for “refining” their ISO-hardness (H [N/m

2
 or 

GPa]) and ISO-elastic modulus E calculations. These include false exponent and 
energy-law violation and undue “Young’s modulus” claim by ([1], etc.) and ISO 
14577, as first disproved in [5,6]. Spherical indentions cannot physically be 
described by a FN - h

3/2
 parabola (FN = normal force, formerly often called “P”), 

even though experimental plots of h
3/2

 versus FN appear to be linear for very high 
R/h values (sphere radius over depth) and low depth ranges. Some updates in 

this area are available elsewhere and may find attention of the readers [7-9]. [7] 

describes the Hertzian theory of 1882 in combination with an asymptotic 
modelling. Also [8] analyzes detailed sphere to sphere indentations. [9] uses sole 
exponents on h and determines its value between 1 to 1.5 on the basis of FE-
simulations, but at the expense of the universal equation that is our unique 
mathematical physics formula (9.7). from 2019 that cannot be denied. 
 
However, a physical background was missing. H. Hertz deduced an equation 
with exponent 3/2 for the mathematical touching of a sphere and a flat surface or 
a second sphere, and for horizontally sliding of solid bodies without pressure 
[10]. Hertz himself literally stressed the validity of his deduction in [10] only for 
the mathematical touching (not indenting) at one single point in [11], and 
Sneddon’s solution for spheres is not a one-exponent parabola [12]. 
Nevertheless, the unproved parabola has also been used for the determination of 

https://www.scirp.org/journal/articles.aspx?searchcode=Closed+Formula+for+Spherical+Indentation&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Challenge+of+ISO14577&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Challenge+of+ISO14577&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Mathematical+Proofs&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Volume+Instead+of+Area&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Correct+Flat+Indentations&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Correct+Flat+Indentations&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Physical+Indentation+Hardness&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Hardness+Dependence+on+Indenter+Shape&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Hardness+Dependence+on+Indenter+Shape&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/articles.aspx?searchcode=+Data+Treatment+Detection&searchfield=keyword&page=1&skid=0
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref9
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the tip rounding of pyramidal indenters. Uncountable AFM (atomic force 
microscopy) publications reported on the “spherical Hertzian exponent 3/2” 
without citing Hertz work and without giving their equation for the impression 
contact under force. No force-depth relation with exponent 3/2 can be found in 
[11] and Hertz’s hardness definition does not help either. This can not at all be 
taken as a description of indentations under load. In addition, the authors of [1] 
and ISO 14577 took over the force-less contact for spherical indentations under 
force for indentations. Also the textbook [2] explained the inconstant a/R ratio (R 
= indenter radius, a = radius of the impression), for not self-similarly penetrating 
spheres in its Figs. 1.1and 1.4 for angles between 0 and at least ±33˚ from the 
normal line. The author did not consider that such angle would not be 
proportional to the depth of spherical indentations. Users were nevertheless 
taught that they can go deeply onto the surface with such a parabola. 
Interestingly, while the exponent 2 for conical indents of Sneddon [12] (his pre-
exponential constant differed from the one of Love [13]) and exponent 1 for flat 
indents were welcomed in [1] and by ISO 14577, but Sneddon’s non-parabola 
solution for spheres with after all three members and three different exponents 
on h (2, 1, and 0) after rewriting of his formula was disregarded (inappropriate 
[10] was preferred). One just took what is liked and disregarded what is disliked 
for the sphere in [12]. However, we do not agree with the solution of Sneddon for 
spheres as the false premises of [12] were the same as those that ended with the 
false exponent 2 for cones. 
 
The universal correct exponent for cones is in fact 3/2 as undeniably proved in 
[14] on the basis of sacrosanct calculation rules. This is also not in accord with 
the still common “iron rule” of ISO etc. Unfortunately, the “iron rule” was not 
abandoned since 1965 and more so when “h

2”
 for cones” was experimentally 

replaced by h
3/2

 in 2004 [15], even though the elegant and simple physical 
deduction (finally published in 2016 [14]) was ripe for deduction. But the false 
exponent “2” for cones/pyramids/wedges is still defended by biased anonymous 
reviewers who fight against the FN = kh

3/2
 plot for conical/pyramidal/wedged 

indentations and unduly call it “Kaupp-fitting” (it must therefore now be called 
Kaupp-plot). Furthermore, they use and cite easily traced juggler tricks from 
published papers revealing unbelievable lack of mathematical knowledge of very 
basic calculation rules. These include unequal dimension on both sides of 
equations, or not realizing that the proportionality factor of loading parabolas has 
a dimension that depends on the exponent of h as does its value, or by defining 
indentation hardness as force over surface area, and then claiming a “theoretical 
confirmation of h

2
” for the cone and pyramid, as deduced from such definition. 

Unfortunately, this includes ISO 14577 officials, authors, editors, and biased 
anonymous peer reviewers. Nevertheless, ISO 14577 and numerous recent 
publications still claim the so-called “Hertzian exponent” on a “parabola with 
exponent 3/2” on hsphere. Others simply claim to use an unspecified “Hertzian 
theory” but without citing the original (e.g. [10] and [11]) and not telling what they 
mean with that, when spheres are penetrating into flat surfaces. 
 
Before having the here disclosed solution the present author expressed however 
on his worldwide lectures the opinion that the spherical loading curves might at 

https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref8
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref2
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref9
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref10
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref9
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref9
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref11
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref12
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref11
https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref7
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best only approximate the exponent 3/2 on h for experimental spherical 
indentations, for large R/h ratios and shallow indents [1,2], as in ISO 14577. This 
speculation deserves the straightforward physical deduction, because h

3/2
 cannot 

at the same time be valid for geometrically self-similar cones/ pyramids/wedges 
and the not self-similar sphere [14]. But even the present author obtained good 
correlations with FN = k h

3/2
 plots in the analyzed spherical indentations from the 

literature. He added the word “apparently” to this exponent of a parabola [16] and 
that these slopes cannot be compared with the ones from pyramids [16]. But the 
reported k1-value from the nickel-superalloy (published R = 269 nm) [17] and the 
k-value from PDMS ((polydimethylsiloxane) (R = 192 µm) ([18], in [16] are no 
longer penetration resistances, because the now deduced Equation (9.7) 
excludes a parabola for spherical indentation. FN = k h

3/2
 plots for spherical 

indentations are physically in error, irrespective of the linear correlations with 
their large radius/dept ratios and narrow depth ranges. This will be shown in this 
paper. We deduce in this work the physical load-depth behavior for spheres on 
the same basis as the deduction in [14] by Kaupp with respect to the impressed 
volume but not with respect to a projected flat basal contact area, and check both 
of these correct and incorrect approaches. By doing so, we will also complete the 
story with the physical proof of the (correct) exponent 1 for flat punch 
indentations. A consistent theoretical understanding is achieved. Both spherical 
indentations were reanalyzed in Section 9.3.2.2. and 9.3.2.3. 
 

 
 

Fig. 9.1 Schematic representation of a sphere partly immersed beneath an 
initial plane surface with an angle α that is differently defined as the one 

mentioned in Section 1 of [2] 

 
Fortunately, the unprecedented new results did not affect our elegant and correct 
calculation of the PDMS adhesion energy with 0.5 FN h in [5], which corrected the 
complicated JKR (Johnson, Kendall, Roberts) [19] iterative process in [18] by a 
factor of 2.66 [5]. 
 
9.2 MATERIALS AND METHODS 
 

The  indentation  onto  a  hard  metallic  nickel  superalloy  with  a  blunt  Berkovich 
indenter with claimed end radius of 269 nm was selected, because its calculated 
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cone depth  h Rcone  1 sin   [16]) of 15.75 nm was very close at 15.9 nm. The 

final depth of only 50.3 nm allowed for the safe collection of 13 data pairs after a 
minor  surface  effect.  Conversely,  the  data  of  a  soft  PDMS  sample 
(polydimethylsiloxane) in combination with a huge spherical indenter radius and 
providing both 54 “experimental” and 54 fitted data pairs at considerable depths 
were  calculated  and  printed  with  Excel

®
.  The  data  collections  were  from  the 

digitized  published  loading  curves  with  the  Plot  Digitizer  2.5.1  program; 
http://www.softpedia.com/.  The  calculations  of  Equation  (9.7)  used  a  pocket 
calculator  with  10  figures  to  avoid  rounding  errors  and  the  results  reasonably 
rounded in the Tables and text. 
 

9.3 RESULTS AND DISCUSSION 
 

9.3.1  The  Force-Depth  Parabola  of  Conical/Pyramidal/Wedged 
Indentations 

 

We repeat here the physical deduction of the exponent for the loading parabola 
of self-similar conical, pyramidal and wedged indenters to remind the elegant 
straightforward technique. Indentations create two connected processes: the 
volume formation and the total pressure [14]. This has hitherto been disregarded 
or ignored, even though the retained part of the pressure (not transformed for 
plasticizing) has been amply used from the beginning for the elastic modulus 
iteration from the unloading curve by [1], ISO 14577. It remained unconsidered 
that even elastic pressure creates work that is generated by the force. We have 
therefore to start with a normal force (FN) parabola FN = k h

x
 with two 

components, one for volume (V) and the other for pressure (p):  

When doing so we have to consider that the total pressure (ptotal) (remaining 
pressure plus loss of pressure in case of all of the different modes of plastic 
conversions) must be used. The exponents m and n must sum up to 1 for 
obtaining FN. As ptotal is undoubtedly proportional to the indented volume of the 
indenter under the originally flat surface we have for the cone with its 

mathematical volume at the depth h the equation  
2 3

total tan / 3p KV K h   . 

The conversion of h r
2
 into (tanα)

2 
h

3
 is self-evident. Similarly, we have h

3
 also for 

the volumes of pyramids and wedges. As ptotal is proportional to h
3
 also 3

N-pF h , 

and h relates to 1/3

N-pF , which is lost for the indentation depth, but it tells us 

that 2/3

N- N-

m

V VF F . So we have physically on the basis of arithmetic calculation 

rules 2/3

N- constVF h  or 3/2

N-VF kh  (Equation (9.1) [14] where k denotes the 

chemo-physical properties of the material in question. This describes in detail the 
deduction of the universal exponent 3/2 for conical/pyramidal/wedged 
indentations with hard indenters (diamond), independent of the materials, as 
could be finally published in 2016 (9.2). 
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(9.1) 
3/2

N-VF kh                                                                                     (9.2) 

 

9.3.2 The Force-Depth Curve of Spherical Indentations 
 

9.3.2.1 Theoretical Considerations, Deduction of Equation (9.7) 
 

The spherical indentation is generally though falsely assumed (ISO14577, 
[1,2,3,4]) to occur as parabola with exponent 3/2. The non-indentation but only 
touching deduction of Hertz [10,11] was taken as theoretical background, but 
there is concern, whether cones/pyramids/wedges could have the same 
exponent for loading parabolas. Experimentally it appeared that such behavior 
would be also valid for spherical indentations, but only for large R/h values and 
the low penetrations that are achieved. Also the present author Kaupp obtained 
good correlations with FN = kh

3/2
 plots from the published “spherical” indentations 

that he analyzed, but the word “apparently” was added to this spherical exponent 
[16] and an initial approximation was claimed. As already mentioned, Sneddon 
[12] did not get a simple parabola at all, but this deduction was disregarded in 
[1,2,3,4]. The solution of Sneddon is as follows when his equation “6.13” is 
substituted in “6.15” on page 54 of [12]. By now using the common letters for the 

corresponding subjects one obtains    2 2

N / 1 2 /F E a R h a aR         
 

with strongly varying h/a- ratio = cotgβ (for β cf. Fig. 9.1) as a three-membered 
“solution”. From there with / cota h   one obtains 

  2 2

N 1 / 2 / cot / cot 2 cotF E h hR R        This is not a parabola 

but cotβ is variable (E = “Young’s” modulus,   = Poisson’s ratio). Experimental 

results are not in agreement with the solution of Sneddon, as it depends on his 
undue premises (area instead of volume) that also led to the disproved exponent 
2 for cone/ pyramid/wedge. The physical solution is now deduced. 
 
When starting with using volume instead of area as shown in Section 9.3.1, we 
reformulate the mathematical volume of the immersed calotte (9.3A) by 
multiplication with 1 = h/h and obtain the form of (9.3B), which separates h

3
 and a 

dimensionless though h-dependent correction factor. Further forms are (9.3C) 
with two different exponents on h and finally for the angle α dependence (9.3D). 

According to Fig. 9.1 is   / sinR h R    so that   / 1 sinh R    or

 / 1/ 1 sinR h    This can be substituted in (9.3B) to obtain (9.3D), so that 

one can also check the angle ranges of the depressions. All 4 forms A-D of (9.3) 
are equal. 
 

 2 / 3V h R h                                                                      (9.3A) 
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 3 / 1/ 3V h R h                                                                  (9.3B) 

 

 
2 3 / 3V h R h                                                                      (9.3C) 

 

 3 1/ 1 sin 1/ 3V h                                                      (9.3D) 

 
We first show how much the dimensionless volume factor of (9.3D) changes for 
various  angles  α  between  30˚  (very  deep  impression)  and  89.5˚  (very  flat 
impression)  in Table  9.1.  They  indicate  the  strong  non-linear  variation  of  the 
volume factor with the indention depth. 
 
Table 9.1 Clearly shows the enormous variation of the dimensionless factor for 
Equations  9.(3B),  which  excludes  a  physical  parabola  exponent  for  spherical 
indentation load-depth curves. It is only valid for every single point of such curve 
with  its  own  R/h  ratio  in  accord  with  the  physical  deduction  in  Section  9.3.1, 
because  the  point  by  point  changing  pre-exponential  dimensionless  factor 
multiplies with the penetration resistance ksphere [N/m

3/2
] (cf. (9.2)). The claimed 

parabolas seem to be excluded under these conditions. There is the proviso that 
so named “experimental data” could have been somehow iterated and fitted. We 
do not invoke the sphere quality here. It is clearly seen at (9.3), that the calotte 
volume is not only described by h

3
 as we had it with the cone (pyramid, wedge) 

where  we  deduced  the  exponent  3/2  on  h  in  Section  9.3.1.  There  is  now  a 
dimensionless factor that changes with the R/h ratio (9.3B). 

Table 9.1. Formal analysis of the volume factor                   
            at varying angle α 

 

α ∘ sin α 1 − sin α π [1/(1 − sin α) − 1/3] 

30 0.5000 0.5000 0.5236 
40 0.642787609 0.35721239 7.7475 
50 0.766044443 0.23395556 13.4282 
60 0.866025403 0.13397460 23.4492 
70 0.93969262 0.06030738 52.0930 
80 0.984807753 0.01519225 207.7429 
89.5 0.999961923 0.00003808 82,499.8071 

 
The physical deduction of the spherical loading curve using (9.3B) starts with the 
evidently coupled processes of volume formation and pressure formation. As in 

Section 9.3.1 it means  (9.1) Both factors relate to the 

immersed volume and n + m must give 1 (9.1). The total pressure (ptotal is the 
sum of p that remains plus p for all plastic deformations) has to be considered, as 
it leads to reversible and to plastic deformations. It is without any doubt that 

ptotal is proportional to the impressed volume V. Thus  3

total / 1/ 3p h R h   
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and  thus  also  FN-p are  proportional  to  h3  / 1/ 3R h    (4).  So.  we  obtain  the 

exponent  n  =  1/3  when  h  is  expressed  in  (9.5)  and  m  =  2/3  because  both 
exponents  must  add  to  1.  As  the  pressure  part  of  the  force  is  lost  for  the 

impression, it follows that  FN-

2/

V

3 
 is proportional to  h 2/3 R / 1/ 3h  

2/3 
 (9.6), and 

thus for the impression  FN-V  kh3/2 R / h 1/ 3  (9.7) where  k takes care of 

the relevant chemo-physical properties of the material in question.  FN-V controls 
the depth and can now be abbreviated as FN in relation to the depth) (9.7) of the 

not self-similar spherical indenter. The calculation of α indicates the angle range 
of  the  experimental  loading  curves.  Equation  (9.7)  shows  that  the  penetration 

resistance  k R / 1/ 3h   [N/m
3/2

] of spherical indentations is not constant and it 

cannot be easily compared with the k-values of pyramidal indentations. The latter 
are  normalized  for  their  cone  angles  [16].  The  physical  deduction  uses  the 
undeniable fact that the indenter volume is immersed into the material and that 
the  force  is  in  part  used  for  pressure  stress  that  produces  elastic  and  plastic 
work. This pressure stress is not part of the depth formation that determines the 
immersed indenter volume. Earlier deductions [12] did not care for the pressure 
part  and  they  thus  violated  the  first  energy  law  [1,2,3]  and  ISO  14577.  Such 
unphysical  “deductions”  were  mathematically  very  complicated  [12,18,19]  and 
yielded  false  results.  The  physical  deduction  in  this  work  does  not  need  more 
than  basic  calculation  rules  in  (9.1)  and  (9.3)  through  (9.7)  for  the  spherical 

indentation  with  its  inconstant  penetration  resistance  k R / 1/ 3h    [N/m
3/2

]) 

with  its  materials  factor  k  and  the  geometrical  factor that  also depends on the  
 depth.  Equation  (9.1) , is  also  the  start  point  for  the spherical indentationon.   

dentationion.                      spherical 

                                                                              

ptotal and thus also  FN-p = h3
 R / h 1/ 3                                                (9.4) 

FN-

1/

p

3  h 1/3 R / h 1/ 31/3 
                                                        (9.5) 

 

With n = 1/3 and m = 2/3 it follows that FN
2/3

 is proportional to the depth h, and 
with the h-dependent dimensionless geometrical factor π(R/h − 1/3) one obtains: 
 

 
2/32/3 2/3

N- / 1/ 3VF h R h                                                        (9.6) 

 

After rewriting and inclusion of the materials factor k one obtains: 
 

 3/2

N / 1/ 3F kh R h                                                              (9.7) 
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The closed Equation (9.7) is the physical description of the loading curve for 
spherical indentations. However, there are further experimental reports telling 
that the exponent 3/2 describes spherical indentation parabolas sometimes 
without reliable knowledge of the conospherical radius. And there are rather 
useless “spherical indentations” when so called “effective radii” are continuously 
changed along the loading curve with power-law fitting [20]. We therefore 
analyze only “experimental” measurements without such and other fittings or 
iterations. These appear to be the loading curves of a Ni-based superalloy with 
nominal largely rounded Berkovich up to the cone-point of 15.9 nm and a PDMS 
nominal experimental spherical indentation. Both exhibit large R/h ratios that 
decrease rapidly with the depth h. By doing so we compared the now disproved 

parabola approach using the Kaupp plot of Equation (9.2) [5,14,16] and the 
physical loading curve Equation (9.7) for comparison purposes. The results are 
collected in Table 9.2 and Table 9.3, respectively, in Sections 9.3.2.2 and 
9.3.2.3. 
 

We have to stress here, that the adhesion energy by jump below the surface of 
PDMS or similarly in force experiments with AFM, as 0.5 FNh for the negative FN-
region stays valid independent of the loading curves’ shape [5] and that it 
continues to correct the erroneous JKR iterations, as e.g. in [18] (Section 
9.3.2.3). 
 

9.3.2.2 The Presumed “Spherical” Nickel-Superalloy Indentation 
 

Spherical indentations can be obtained with blunted conical/pyramidal 
indentations below the cone point depth, when the depth in the following “cone 
region” is only short. A typical example is the nickel-superalloy loading curve 
from [17]. 
 

The determined FN and h
3/2

 data below the cone point are listed in Table 9.2. The 

published end radius of the Berkovich indenter was 269 nm. After removal of the 
initial effects the R/h ratios are from 284.867 to 21.350. The value of 

 [16] is 15.75 nm, where β is the effective cone angle of    

the  Berkovich.  (but  see  Chapter  16).  The  observed  hcone is  at  15.9  nm,  which 
corresponds closely to the calculated value in apparent accord with a spherical 
indentation part. The Kaupp-plot for the postulated parabola (not shown) gives a 
straight line with a slope of 3.873 µN/nm

3/2
 (r

2
 = 0.9997). This can however not 

be  a  confirmation  of  the  h
3/2

 parabola  for  spheres,  because  the  physical 

correction  factor  of   R h/ 1/ 3  in  (9.7)  has  not  been  applied.  The 

physically correct  plot  (9.7) with the same data points gives the covalently bent  

 loading  curve  of Fig. 9.2.  The                                     
comparison of these different outcomes is difficult, but we try with a provisional         

trendline for the Fig. 9.2 curve, the slope of which calculates to 0.0688 µN/nm
3/2 

. 
This  gives  at  least  a  rough  hint  for  the  enormous  error  (despite  the  high 
correlation)  when  the  unphysical  parabola  assumption  ([1]  and  ISO14577)  for 
spherical indentations is applied. However, the change of R/h (Table 9.2) or sinα 
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(Table 9.1)  is undeniable  and the hard to explain  apparent “parabolas”  bear the    
risk that their slopes be interpreted as being real for further applications. The first   
goals  of  indentations  are  hardness  and  elastic  modulus  and  when  these  are  
unphysical,  their  errors  are  perpetuated  in  the  there  from  defined  further  

characterization of  the  materials.  For  example  12  different  applications  of  the 
indentation modulus from viscoelasticity to fracture toughness are listed in [21]. 
The  apparent  slopes  of  unreal  spherical  indentation  parabola  plots  cannot  be 
interpreted  as  physical  indentation  hardness  and  used  for  face  transition 
energies  and  activation  energies  as  in  the  case  of  conical/pyramidal/wedged 
indentations (Section 9.3.1). Also the k-value of this nickel-superalloy sample that 
was published in [16] is invaluable. It is no longer the penetration resistance for 
spherical indentations. It would suggest far too high constant hardness instead of 
the changing hardness when the depth increases. The reason is the particular 
formula (9.3) for the penetration calotte volume, even in the very narrow ranges. 
One  has  to  use  Equation  (9.7)  for  a  correct  result.  The  authors  of  [17]  unduly 
called their cone point at 15.9 µm a “pop-in” “marking the transition from elastic to 
plastic deformation”. When R would be 269 nm it would however be the change 
from spherical to pyramidal indentation. There is however the proviso: this kink 
would most likely indicate a harder surface layer with about 15 nm height on the 
bulk, provided that the pyramidal end-radius was actually sharp. This tip-radius 
might  have  been  determined  as  the  second  free  parameter  (C1 with  the 
dimension of a length) of the second iterated term C1hc from the eight parameter 
iteration  of  the  contact  area  from  [1]  and  ISO  14577.  This  technique  is  often 
performed  and  leads  to  undue  very  large  “radii”,  so  that  this  is  the  most  likely 
explanation as a parabola from a sharp pyramid. There is almost no opposition 
against this tip rounding iteration technique in the literature in addition to [16,22] -
----.  Tip  radii  must  not  be  iterated  but  measured  with  tapping  mode  AFM  [16]. 
This indentation should be repeated with a certified sharp Berkovich indenter to 
finally clarify these points. Table 9.2 and Fig. 9.2 contain the results showing the 
shape of the plot that would describe the spherical indentation when R is indeed 
269 nm (9.7). It clearly confirms the non-parabola for such spherical indentation. 
 
9.3.2.3 The Spherical PDMS Indentation 
 

The  result  with  the  Ni-superalloy  requires  also  the  analysis  of  a  much  deeper 
indentation  with  a  huge  sphere  radius  and  much  deeper  penetration  with  very 
compliant  materials.  A  published  nominal  “experimental”  PDMS  spherical 
indentation (the sphere radius was R = 192 µm) and the JKR iterated and fitted 
unloading curve [18] (the fitting formula is published in [18])  were analyzed for 
comparison.  Both  provide  FN-h

3/2
 parabolas  against  (9.7).  The  jump  below  the 

surface  requires  starting  from  the  so  formed  negative  force  minimum,  but  the 
adsorption energy does not disturb the analyses [5,16]. The R/h ratio varies from 
480  to  53.33  (Table  9.3).  Also  the  present  author  had  analyzed  these  loading 
curves  with  respect  to  the  claims  of  ISO  14577  and  [1,2,3,4]  by  applying  the 
Kaupp-plot. Kaupp calculated and published apparently well correlating k-values 
[5,16]  that can  however  no  longer be  considered  as being valid, because they 
violate the physical deduction of the closed formula (9.7) (Section 9.3.2.1). The 

slope of the (unphysical) FN-h
3/2

 data (not shown here) was 0.04912 mN/µm
3/2
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= 0.9999 with 54 data points). Also for the JKR-fitted unloading curve the 
corresponding correlation with a slope of 0.0560 mN/µm

3/2
 calculated with r = 

0.9999. This appears to be a good fit, but it does not prove anything, because it 
does not correspond with the physical Equation (9.7). We try to explain these 
features against physical evidence and analyze the experimental loading curve 
with Equation (9.7) in Table 9.3 and Fig. 9.3. There remains the proviso that the 
loading curve named “experimental” was perhaps also JKR iterated and fitted to 
correspond with the prescribed parabola of [1] and ISO 14577. Again there are 
increasing values of h

3/2
 multiplied with decreasing correction factor values. The 

plot according to (9.7) is again concavely bent. Comparison can again only be 
tried with the provisionally calculated trendline in Fig. 9.3. Its slope is 0.0005 
mN/µm

3/2
. The so judged error of the unphysical parabola is almost twice as 

much as in the nickel-superalloy in Section 9.3.2.2. Such JKR-iterations and 
fittings are detrimental treatments of experimental data, as already challenged in 
[5]. Here the JFK iterations and fittings calculated what the authors wanted to 
see: an “iron-rule” parabola with exponent 3/2 as prescribed by ISO 14577 and 
([1], etc.), which is clearly disproved by (9.7). Our provisional green trendline 
does not mean that the original experimental data would lie close to it or on it. 
Iterated and fitted data cannot be reconstructed. 
 

 
 

Fig. 9.2. FN versus  plot (9.7) of a Ni-based superalloy with 

a rounded Berkovich (claimed R = 269 nm) after the removed initial effect 
(first point at 30 µN load) up to the cone point at 180 µN; the green line is 

the provisional trendline (only for comparison) with a slope of 0.2169 
µN/nm

3/2 

 

Our physical analysis is important, because any non-physical direct plot FN-

sphere versus h
3/2

 would give vastly different false indentation hardness values as 
already exemplified with the Ni-based superalloy in Section 9.3.2.2. Clearly, 
spherical indentations are unable to obtain hardness values. They would change 
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from depth to depth for every R/h-value (Table 9.3). Also, the hitherto used older 

formula of [1]  
1/2 1/2

r2 /S E A   is incorrect for spherical indentations. 

 

It must be noted here that our AFM (atomic force microscopy) loading curve of 
polystyrene with a silicon cantilever (typical apex radii 10 - 15 nm) in [16, 22] is 
the result of a pyramidal indentation, but not of a “spherical indentation”. After an 
initial effect well below 100 nm depth the pyramidal indentation proceeded down 
to 550 nm depth with 16 µN load. 
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Table 9.2 Analysis of a Ni-based superalloy indentation of a blunt Berkovich up to the cone point depth as it would be with R = 
269 nm) according to (9.7) 

 

h (nm) h
3/2

 R/h π ( R / h − 1 / 3 ) h3/2
π ( R / h − 1 / 3 ) FN (µN) α (˚) 

0.17728 0.07464 1517.37 4765.91126 355.7276 5.5039 87.9198 
0.94430 0.91763 284.867 893.888878 820.2593 15.1171 85.1978 
2.74338 4.43902 98.0542 306.999157 1362.7753 32.2638 81.8102 
3.83473 7.50935 70.1484 219.330501 1647.0295 43.9297 80.3140 
4.95573 11.0322 54.2806 169.480337 1869.7410 57.6617 78.9850 
5.87044 14.2235 45.8228 142.909374 2032.6715 71.4031 78.0081 
6.81462 17.7894 39.4740 122.296389 2175.5794 85.1433 77.0758 
7.84709 21.9818 34.2802 106.647301 2344.2996 100.51 76.1268 
8.88041 26.4636 30.2914 94.1160423 2489.0205 116.75 75.2368 
9.82479 30.7953 27.3797 84.9686669 2616.6356 135.004 74.4671 
10.9166 36.0687 24.6414 76.3661338 2754.4427 153.183 73.6211 
11.7138 40.0910 22.9644 71.0975929 2850.3736 165.001 73.0293 
12.5993 44.7218 21.3504 66.0270623 2952.8491 178.254 72.3947 

 
 
 
 
 
 
 
 
 
 



 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
The Loading Curve of Spherical Indentions is Not a Parabola and Flat Punch is Linear:  

Scientific Explanation 

 
 

 
138 

 

Table 9.3. Analysis of a spherical indentation onto PDMS with a Borosilicate glass ball (R = 192 µm) of [18], according to 
Equation (9.7) 

 

h (µm) h
3/2

 R/h π (R/h − 1/3) h3/2
π (R/h − 1/3) FN (mN) α (˚) 

0.0     −0.02759 90 
0.4 0.2529822 480 1506.91729 381.2232 −0.00919 86.3009 
0.8 0.7155418 240 752.93505 538.7565 0.019923 84.7678 
1.2 1.3145341 160 501.60764 659.3803 0.055012 83.5908 
1.6 2.0238577 120 375.9448 760.8588 0.094993 82.5980 
2.0 2.8284271 96 300.54640 850.0736 0.141720 81.7229 
2.4 3.7180640 80 250.28022 930.5579 0.248921 80.9313 
2.8 4.6852962 68.57 214.37182 1004.3955 0.239081 80.2030 
3.2 5.7243340 60 187.44837 1073.0171 0.298851 79.5247 
3.6 6.8305198 53.33 166.49395 1137.2402 0.350958 78.8873 

https://www.scirp.org/journal/paperinformation.aspx?paperid=94740#ref15
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Fig. 9.3. FN versus  h3/2 R h / 1/ 3  plot of the “experimental dat

a” ofthe PDMS polymer with a Borosilicate glass ball (R = 192 µm) [18] 
according to (9.7); it starts at the minimum after jump below the surface; 

the green line is the provisional trendline (only for comparison) with a 
slope of 0.0005 mN/µm

3/2
 

 

9.3.3  The  Force-Depth  Relation  of  Flat  Cylinder  or  Beam 
Indentations 

 

It is widely accepted that the flat indenter (either column or beam) proceeds 
linearly ([1,2,3] and ISO 14577). According to Sneddon the cylinder penetrates 

with  “  
2

N 2 / 1F rhE   ” [12] (here r as column radius, h depth, E Young’s 

modulus. and ν Poisson’s ratio). The exponent on h is thus 1, but we need a 
clear-cut deduction without Young’s modulus avoiding the premises of Sneddon. 
This has however never been studied before. As there is also the volume 
formation coupled to pressure formation one starts the deduction as in Section 
9.3.1, which tells that one does not indent towards a projected basal indenter 
face, but against the volume formation by the indenter. Any almost negligible 
compression of the very hard indenter is part of the pressure action. The volume 

of the cylinder 
2V r h  or of the beam 

2V a h  (here a means the edge), 

has only the h as the variable. In that situation both the pressure and the 
immersed volume are both directly proportional to the depth. The pressure part is 
again lost for the depth and we get directly FN-flat = kflat h

1
 (9.8). The applied force 

and thus work is the area of the FN-h triangle (9.9). It is 1:1 divided between 
pressure work Wflat-pressure and the indentation work Wflat indent. The latter is thus 
the area of the FN-h triangle (9.9). Wflat-indent is thus 1/4 FN-max hmax (9.10), again in 
accordance with the first energy law [5,6]. The penetration resistance kflat is here 
the physical indentation hardness with the dimension [N/m], which is also the full 
flat loading stiffness (S). And kflat/2 is the energy corrected flat impression 
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hardness = stiffness. The definition of [1]  
1/2 1/2

r2 /S E A   is also here in 

error, because it relies on the unsuitable premises of Sneddon by using area 
instead of volume [12]. 
 

N-flat flatF k h                                                                                    (9.8) 

 

flat-applied N-max max1/ 2W F h                                                            (9.9) 

 

flat-indent N-max max1/ 4W F h                                                           (9.10)  

 
Load versus depth curves of flat punches onto visco-elastic materials seem to be 
rare, as creep and moduli were the prevailing points of interest. However, load-
depth curves with cylinder of 0.5 cm radius onto F82 H steel at different 
temperatures (92˚C to −196˚C) used loads up to 600 N and were linear up to 100 
N at about 30 µm depths. They continued at first with moderate bending up to 
250 N and further so up to 600 N towards 1 mm depth. The first part up to about 
50 N or 0.5 GPa with a poorly resolved kink was reported as “fully reversible”. 
The kink was followed linearly up to 150 - 200 N or 1.5 - 2 GPa, depending on 

the temperature. This experimentally confirms the indentation law  
flat

1h for the low 

resolved initial parts. The bending above these loadings was interpreted with 
three different plastic stages [24]. As such bending is not in accord with (9.8) it 
has to be concluded that the experimental control was lost at such high loads, 
most probably by macroscopic undetected cracks and perhaps chemical 
transformations of the different components. The following bending starts with 
protruding of material around the imprint or chemical reactions [24]. Regular pile-
up would not destroy the physical law (9.8) [5,25]. Interestingly, these results are 
comparable with the yield stress of tensile tests, the values of which are about 3 
times smaller than the stress at the start of the bending for 16 tested metallic 
materials [24]. The elastic moduli have been obtained from the slopes of the 
initial linear part of the unloading curves from 120 - 110 µm without iterations. But 
energy law corrections that should be the factor 0.5 according to (9.9) and (9.10) 
[5, 6] have not been considered. The obvious comparability of flat macro-
indentation with tensile tests appears interesting for further applications. 

 
9.4 CONTINUATION 
 
For later found not data-treated spherical indentations in accord with eqn. (9.7) 
see Chapters 11 and 13. The presented deductions of physical equations for 
conical/pyramidal/wedged, spherical, and flat indentations must urgently replace 
the false historical equations of ISO 14577 with their energy law violations for 
obtaining reliable mechanical parameters and to enable the new applications 
(detection of phase-transition onsets, their transition energies and activation 
energies) that were previously not possible. Further applications are to be 
developed particularly at very low temperatures for airplanes and spacecraft 
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vehicles. The spherical indentations are the most complicated and least 
rewarding ones. The spherical work of indentation by integration of Equation 
(9.7) does not provide a rational ratio with the total work of indentation, as 
comparable with the 4/5 ratio in the case cones/pyramids [5]. This complicates 
the important energetic evaluations and the not self-similar spherical indentations 
are thus more difficult than the indentations with the self-similar indenters. The 
same is true for paraboloids of revolution for which [1] falsely claimed loading 
parabolas (but see also Chapter 13) with exponent 3/2. They are 
centrosymmetric but not self-similar. Also ellipsoids and two-sheet-hyperboloids 
of revolution are centrosymmetric but not self-similar indenters that would 
complicate their advanced use. 
 
The  possibilities  of  flat  punch  indentation  require  further  development  and 
promise  interesting  further  applications  beyond  the  creep  determinations.  ISO 
must  be  further  urged  to  thoroughly  revise  and  modernize  ISO  14577  on  the 
physical  basis  without  iterations  and  data-fittings.  This  will  remove  the  falsely 
obtained  mechanical  materials  parameters;  which  is  of  urgent  importance  for 
avoiding  the  risks  with  technical  products  in  daily  life.  The  certification  of 
industrial producers must be based on physical reality rather than on historical 
errors  to  enable  the  use  of  the  correct  novelties  and  the  development  of 
improved  materials  and  confidence  in  a  correct  way,  so  that  catastrophic 
mechanical failures can be avoided or at least minimized. Responsibilities can no 
longer be shifted to ISO 14577 and from there to historical researchers. 
 

9.5 CONCLUSIONS 
 
The  most  severe  misconceptions  in  the  powerful  (nano)  indentation  field  have 
been  reported  in  this  paper.  It  is  the  two-dimensional  treatment  of  the  three-
dimensional  impression  into  solids,  with  its  now  obsolete  “iron-rule”  (“cone 
exponent 2, sphere exponent 3/2, and flat exponent 1”). The main problem was 
the  impossible  equality  of  exponent  3/2  for  conical/pyramidal  [14]  and  for 
spherical  indentation  loading  curves  [1,2,3].  This  had  to  be  solved  despite  the 
common  ISO  14577  standards.  Only  the  exponent  1  for  flat  punch  indentation 
was not debated, but it also required the deduction of a correct Equation (9.8). By 
prescription of [1] and ISO 14577 the conical parabola should have the exponent 
2  on  h  instead  of  3/2.  Therefore,  believing  researchers  tried  to  question  the 
universality  of  h3/2

 for  cones/pyramids/wedges  and  iterated  huge  tip  roundings 
with 8 free parameters for indenters, while proposing exponent 3/2 parabolas for s
pheres.  By  doing  so,  these  researchers  had  to  iterate  and  fit  their  data  from s
pherical indentation for example with JKR techniques, in order to obtain treated d
ata, providing four-nines-correlations that only exhibited what they expected to ob
serve. Both detrimental techniques (iteration of excessive tip radii and iterative dat
a-fitting treatments) are uncovered in this work. It could be done because the und
eniably  deduced  physically  formulas  cannot  be  overcome.  Also  CSM Inst
ruments  Application  Bulletin  35  advocates  for  FEA  (finite  element  models). 
and JKR iterations for spherical indentations on the basis of  “h3/2

 parabolas for 
spheres”. A respective very complicated data-fitting formula is cited and written    
down in the Introducion of Section 13 on page 185. The enormous errors of such   
fitting data treatments are roughly judged. Another iteration and fitting technique    
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is the continuous change of“effective  radii”  along  the  loading  curve  with  pow
er-law  fitting  [20].  It  is particularly  bothersome  that  the  materials  are  false
ly  calculated  (including violation  of  the  energy  law)  and  that  phase-transition
s  under  load  cannot  be traced with false exponent and  the shape of the untreat
ed loading curves. The correct value of the exponent is of utmost importance for i
ncreased precision by regression,  the  calculation  of  materials’  properties,  the  
recognition  of  initial surface effects, gradients, and phase transitions with their tr
ansition energies and activation energies [5,16,25,26,27,28]. The therein and in th
is paper challenged behaviors  create  high  risks  and  miss  the  important  possi
bilities  for  avoiding catastrophic failures by initiation of nucleation for cracks with 
catastrophic failures within the polymorph interfaces [25]. All of that is inaccessibl
e with the unphysical exponents  and  iterations  with  data-fittings.  The  differentia
tion  between  loading parabolas,  non-parabolas,  and  straight  lines  is  also  im
portant.  The  physical deductions  of  the  loading  curves  use  the  volume  of  the  
indenters,  rather  than their basal surface area or “contact area”, to obtain closed 
formulas without any iterations  and  data  fittings  in  a  very  elegant  and  simple  
way  as  compared  to previous  work.  A  comprehensive  understanding  has  be
en  achieved  now  for conical/pyramidal/wedged, spherical, and flat-punch indent
ations. This has been shown  for  experimental  nano-  and  micro-indentations.  Fu
rther  applications  are expected  for  AFM  studies  of  visco-elastic-plastic  bi
ological  and  medical preparations.  The  universal exponent  3/2  on  h  for  the  lo
ading parabola  is only valid  for  cones/pyramids/wedges  [14].  Spherical  inde
ntations  provide  non-parabola loading curves according to the now deduced Eq
uation (9.7), and flat-punch indentations with exponent 1 follow the new Equation 
(9.8). The reason for the non-parabola at spherical indentations is the strongly var
ying R/h ratio upon penetration of geometrically not self-similar sphere calottes. 
 
Clearly,  undeniable  closed  physical  formulas  based  on  sacrosanct  calculation 
rules  stands  before  regression  analysis  of  a  physically  incorrect  parabola  that 
required  data-fittings.  This  shows  for  spherical  indentations  that  any  published 
linear correlations without  valid physical background  require our techniques for 
the  detection  of  data-treatments.  Sorry  to  say:  it  might  perhaps  be  easier  for 
mainstream researchers, who do not dare to challenge ISO 14577, to please it 
and also its proponents. 
 
The new unprecedented physical deductions rely on the indented volume (not on 
projected area) by using undeniable calculation rules [14]. All of the errors from 
the previous falsely believed (including violation of the energy rule) indentation 
exponents are to be abandoned. The still exacting of the world by the common 
ISO 14577 standards with the energy law violations derived from the unsuitable 
mathematical  premises  of  [1,2,3,4,12,13]  that  did  not  consider  that  the  “depth 
formation  work”  (projected  area  instead  of  volume)  is  coupled  to  the  pressure 
work, which can however not be created from nothing. ISO 14577 and [1,2,3,4] 
are  incorrect.  They  required,  prescribed,  or  allowed  data-fittings  and  iterations. 
These  missed  all  of  the named  unprecedented  further  applications  and cannot 
even detect the calibration errors in calibration standard indentions of [1] (five of 
the  six  standards  with  calibration  error;  two  mix-ups  of  figure  designations; 
ignoring phase-transitions). These experimental errors are not corrected and still 
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used in the ISO 14577 documents. The unprecedented novelties have already 
been applied for conical/pyramidal/wedged indentations [5,6,16,25,26,27,28], 
and further applications are expected for the Equations (9.2), (9.7) and (9.8) 
when ISO 14577 will be profoundly revised on sound physics but not on historical 
errors. Unfortunately, there are non-scientific problems for a rapid ISO decision, 
including severe liability questions [26]. 
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ABSTRACT 

 
In order to determine the phase-transition onset forces, indentation energies, and 
transition energies, the Berkovich indentation loading curves of the initially only 
extraterrestrial available polymorphs of SiO2 are physically analysed using the 
now well-established FN versus h

3/2
 plots for conical/pyramidal indentations. 

These features are described for two phase-transitions of synthesised Stishovite 
that result in two polymorphs, one of which being Seifertite. For increasing load 
indentation, a third post-Stishovite polymorph is obviously projected. The 
anticipated third of them is waiting, and the two of them are currently available for 
further examination on Earth at room temperature. The force-depth curve had to 
be self-evidently repaired in order to eliminate the published "pop-ins." It appears 
to be the first time that the significance of published "pop-ins" has been clarified. 
There are numerous causes for bothering them and for the avoidance of them. 
They are mechanical artefacts rather than features of the materials. Although 
theoretical considerations suggest that the beginning of "pop-ins" involves an 
elastic-plastic conversion, published pop-ins has absolutely nothing to do with 
phase transitions. Spherical indentation analyses before them are obsolete and 
dangerous. Final support is inter alia that one of the two new MgO twinning 
transitions is within a published “pop-in excursion”. The putting of a pop-in arrow 
at smooth loading curve without discontinuities in the FN versus h

3/2 
plot is 

criticized, as the transfer between chemically different phases is neither phase 
transition nor “pop-in”. The onset forces, energies, and endothermic or 
exothermic phase-transition energies of the polymorph are described. 
Mechanochemical analysis is done on the formation of the Stishovite, post-
Stishovite, and MgO polymorphs. For the safe use of technical materials like 
MgO for building or coated superalloys in things like aeroplanes, turbines, and 
other large machinery, high pressure polymorph energetic characteristics are 

crucial also for the earth's sub mantel investigations. The onset and 

transition energies need to be higher than the maximum permissible mechanical 
and thermal stress for them to be safe since breakage and catastrophic cracks 
are more easily initiated at polymorph interfaces.   
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post-stishovite; stishovite; quartz. 

 

10.1 INTRODUCTION 
 

High energy polymorphs of quartz are one example of an extraterrestrial material 
that was initially found in meteorites from Mars and later gathered from the moon. 
These crystalline substances include the monoclinic quartz variant, orthorhombic 
Seifertite, and the tetragonal Stishovite polymorphs that appeared later. Each 
one of the three is metastable at normal temperature. Today, stishovite is also 
discovered in diamonds, ultrahigh pressure metamorphism rocks, atomic 
explosion craters, and other geological formations. Large enough single crystals 
of Stishovite are currently successfully crystallising using high-pressure, high-
temperature syntheses, and Seifertite has also been obtained.  They are yet the 
second hardest oxides. The indentation of Stishovite is of particular interest, as 
indentations of α-quartz undergo exothermic phase-transition into an amorphous 
phase but not endothermic into crystalline Coesite, another high pressure 
polymorph of SiO2. Apart from amorphous phases one could expect exothermic 
formation of Coesite or endothermic Seifertite and the monoclinic variety from 
Stishovite. A still higher post-Stishovite polymorph’s transition energy will be 
expected. Two microindentations with Berkovich diamond indenters have been 
reported. One of them reports three small pop-ins and the other one very late 
broad “pop-in”. But smooth loading curves are necessary before physical (not 
iterative fitting) analyses are enabled for phase-transition onsets (depth and 
load), indentation work (W indent), applied work (Wapplied), and transition energy 
(Wtrans). Such endeavor requires correct calculation, excluding rounding errors 
with the already long available simple closed formulas. Iterations converging to a 
false exponent on the depth h and the inexcusable violation of the energy law 
must be avoided. Rethinking of the “pop-in’s” meaning and their removal or 
avoidance removes the still most complicated common misinterpretations. 
 

Phase-transitions are revealed from physically analyzed [1] smooth force-depth 
curves of conical-pyramidal indentations not involving “pop-ins”. The differences 
in the penetration resistances of the formed polymorphs provide sharp 
unsteadiness in the normal force vs. depth

3/2
 plots (FN vs h

3/2
). Some still iterating 

opponents have disdainfully been calling it “Kaupp-plot” but we will take it up now 
respectfully. The Kaupp-plot gives the penetration resistance k with dimension 
[N/m

3/2
] as physical hardness. It is the slope from conical, pyramidal, and wedged 

indentations [1]. It will be shown for the first time that “pop-in” is unintended 
autonomous force hold, while indentation depth values are falsely extrapolated 
and not corrected upon force resumption. There are several reasons for the 
avoidable show-up of “pop-ins”. Frequent speculation in the literature still claims 
their being essential for elastic to plastic conversions of materials, which are 
however not phase-transitions [1]. Particular striking misuses of the “pop-in” term 
are arrows labeled “pop-in” that point to smooth loading curve sites where there 
is none. Furthermore, one must not use the Kaupp-plot (FN vs. h

3/2
) [1] without 

prior removal of published “pop-ins” (e.g. [2]), and beware of using it for spherical 
indentations. These are not simply parabolic. Only the Kaupp-plot reveals phase-

https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref2
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transitions with their onsets and energies. That is easy, fast, and reliable. Phase-
transitions have only rarely been guessed by “pop-outs” that require particular 
unloading techniques for confirming spectroscopic or electric results from e.g. 
hydrostatic pressure experiments. Almost all actually occurring phase-transitions 
remain unknown, if the physical Kaupp-plot analysis [1] is avoided for historical 
reasons. This proved already extremely dangerous, as polymorph interfaces 
upon phase-transition are nucleation sites for initially small cracks that upon 
further force produce catastrophic cracking for example in airliners [3,4,5]. 
Remedy is indispensable for e.g. the titanium alloys of propeller blades that 
should be improved in composition or replaced by other improved superalloys in 
airliners. Their phase-transition onsets and endothermic phase-transition 
energies must be far beyond the maximal forces that occur during turbulent flight. 
Some updates in this area are accessible elsewhere and can attract the readers' 
attention [6-8]. [6] provides a review of the vapor-liquid phase-transition of 
confined fluids in the pores of solids. [7] studies the phase-transitions of plastic 
crystal salts. [8] analyses the high-pressure polymorphism phase-transition 
process with hexahedron pressure equipment and uses synchrotron diffraction 
up to 40.4 GPa. After the author’s complaints in [4,5] that phase-transition under 
load facilitates catastrophic cracking of titanium-aluminium alloys, there is now a 
response. The chosen faster “remedy” is apparently not replacement of the alloy 
by a better one. It is now the placing of devices in front of the airliners’ turbine 
propellers for impeding rotating broken off propeller blades from exiting at their 
higher speed in forward direction and shortly thereafter hit penetrating at the 
fuselage. In the meantime, small cracks at the pickle-fork (wing-connection to 
fuselage) and cracks at the fuselage were searched for and detected. Hundreds 
of airliners were long term grounded at once. 
 
This paper puts forward the physical analyses of widespread Berkovich 
indentations for clarifying erroneous reports in the literature on the basis of 
common calculation rules, but not iterations with up to 3 + 8 free parameters. It 
disproves the unfortunately continued toleration of the ISO (International 
Standardization Organization) violation of the energy law, which impedes to even 

think of phase-transitions (creating polymorph interfaces for crack initiation), 
not to speak of their detecting by the FN vs. h

3/2
 curve. This paper exemplifies the 

new application possibilities (the phase-transition activation energy requires 
temperature-dependent indentations). It analyzes the indentation onto Stishovite 
(SiO2), magnesium oxide, and a covered superalloy. It requires only the physical 
loading curve analysis for obtaining the phase-transition onset and its energy. 
The calculation uses basic algebraic calculation rules but no iterations for the 
secure use of existing and advanced materials. The ease of the indispensable 
physical analysis of indentations is particularly favorable. Also the necessity for 
precise direct calibrations will be stressed. Unfortunately, the ISO “standards” 
that were obtained with false force calibration, materials’ mix-up, inconsideration 
of the phase-transitions, and excessive multi-parameter iterations (as revealed in 
[5]) are unacceptable. But fortunately, these standards are not required at all. 
Only the absolute force and depth calibrations and the proper execution 
prescription of the indentation experiment are essential. That part of the 
calibration and its reliability is apparently in good hands at ISO or at the 

https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref3
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
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instrument builders, as shown by the successful physical analyses. Any occurring 
false calibration of instruments is fortunately immediately recognized, when 
experimental data do not concur with the undeniable general algebraic formulas. 
Examples are poor force linearity at higher loads or defective indenter tips, or 
manipulated published data, or iterated and fitted curves. Any false reports 
facilitate disastrous results when checks of their content are omitted. False 
experiments require repetition. Advanced materials require the use of 
indentations with physical analysis with all of the new possibilities for their 
characterization. This is exemplified in this paper. 
 

10.2 MATERIALS AND METHODS 
 
When force vs depth indentation curves from the literature were analyzed for 
phase-transitions, all published “pop-in excursions” were removed and the falsely 
extrapolated depth readings were subtracted for joining the depths from before 
and after the shown-up distortion. A continuous smooth loading curve was 
obtained by joining the loading parts that were interrupted by the force hold. This 
self-evident repair (Section 3.1) enabled the physical analysis with the Kaupp-
plot. The k-values (penetration resistances = physical hardness) were not 
affected by the repair, whatever the reasons for the “pop-in” might be because 
creep errors were by far too small. The original data-point pairs were taken from 
the printed figures that were enlarged to abscissa lengths of 15 to 20 cm for that 
purpose. They were directly loaded to Excel

®
 for the calculation of Figure 

10.1 through Figure 10.3 and listed in Table 10.1. The calculations according to 
the already repeatedly published short and easily proved equations (numbers 3 - 
7 in [5]) must not be repeated here. Due to high sensitivity and for avoiding 
rounding errors, all values throughout were calculated with 10 significant figures, 
for reasonable rounding in Table 10.1 and at the final results in the text. Due to 
its energy law violation of the mostly used “P” for the normally applied force we 
use FN that is 0.8 P. The factor 0.8 is inherent in FN for being compatible with the 
energy law. This avoids a complication of formulas. 0.2 FN is the universal 
requirement for the elastic + plastic work of conical, pyramidal and wedged 
indentations [5] (Chapter10.7). 
 

10.3 RESULTS AND DISCUSSION 
 
10.3.1 “Pop-Ins”: Appearance, Significance, Handling 
 
So called “pop-ins” disturb the force-depth loading curves of indentations. If these 
appear, more careful repetition of the indentation experiment is required, or 
repair of the printed curve from a publication becomes necessary, prior to looking 
for the physical force-depth and energetic relations. At every “pop-in” production, 
the indenter electronics go autonomously in a force hold-mode, while the 
penetration loop continues in a pseudo creep mode with falsely reporting 
somehow extrapolated “fake depth” readings (not creep depression) until 
resumption of the loading loop, when too deep penetration depth value readings 
continue. The joining together of the loading parts requires subtraction of the 

https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#f3
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#t1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#t1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
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“fake-values”. Such correction must be manually executed, as there is no 
automatic correction when the force loop autonomously resumes after some 
time. It is hard to understand why that was not seen before. The real depth is the 
same at both ends of the horizontal “pop-in”, notwithstanding some minimal 
creep that is often too small for being corrected, due to the short and comparably 
low constant-force action. Autonomous force holding (“pop-in”) is a purely 
instrumental error. Unfortunately, common practices still continue to concede the 
pop-ins a physical significance (elastic to plastic conversion) that must be 
urgently challenged now. For example, pop-ins have nothing in common with the 
onset of “a sudden and strictly plastic punching” and it is not “an entirely plastic 
deformation process” [9]. Correspondingly, it has been claimed that “the onset of 
full plastic yielding at the indenter site is to be marked at the pop-in point” or that 
the “Hertzian elastic stress” ends at the pop-in [10]. 
 
Published pop-ins appear primarily when nanoindentation instruments are not 
cased for protection from environmental influences. For example they appear 
upon audible, ultra and infra sound, shaking, or switching of heat sources. To say 
it again: the force control stops during the published pop-in, while depth values 
are further extrapolated and recorded instead of a creep mode switching. Other 
distortions of the force control can be roughness, e.g. when the descending 
indenter tip hits with its skew sides or edges to a terrace step or other obstacle, 
or when it falls into a micro-hole. These events might sufficiently arrest the very 
sensitive constant force increase loop. It takes thereupon some time for 
autonomously resuming the force loop. Remedy is repetition of the experiment at 
a different site of the sample, or at another time, or at a larger distance from 
previous impressions or sample edges. The suggested distance of 10-fold 
indentation width should better be 20-fold [3]. Loading curves without pop-ins are 
achieved when following these hints. 
 
Nevertheless, published pop-ins have continuously been interpreted as a purely 
elastic to plastic conversion, even though such published pop-ins started at 
different forces, often occurred multiply within the same indent, and varied 
considerably in their time for resumption. The elastic to plastic conversion does 
not change at such event and that is physically proved [1]. Furthermore, the 
“cone-point” {hcone = R (1 − sinα), where R is apical radius and α half-angle} is 
much smaller than the start of the shown-up pop-in with common Berkovich 
indenters. Examples for such errors are manifold in the literature. Most intriguing 
are claims of “pop-ins” when these are not present in the smooth FN vs h curves. 
Some authors even try to misuse the term “pop-in” by inserting an arrow with 
such label at the smooth Berkovich loading curve. And that is tried to justify with 
the disproved “Hertzian theory” for spheres. For example the authors of [11] try to 
support their false belief with a large tip radius R. By using the iterative ISO 
14577 techniques for the iteration of their tip end-radius they used a fused quartz 
indentation and both 3 + 8 free parameter iterations for comparison with equally 
treated and fixed standards. But they did not consider the numerous challenging 
reports telling that such “calibration” leads to far too high values, when compared 
with direct tapping-mode AFM measurements. The published iterated “tip radius” 
in [11] amounts to 269 nm. Such rounding would indicate an effective cone 

https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref3
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref8
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref8
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height of 15.75 nm for a Berkovich, which is almost the same as the kink position 
of the Kaupp-plot in [12]. The authors of [11] assumed elastic to plastic 
conversion at 15.9 nm depth for their Al-covered Ni-based superalloy diffusion 
zone and used a so-called “Hertzian approach”, falsely believing in a spherical 
indentation up to this point. However, as already told above, spherical 
indentations do not proceed with a simple parabola [12]. The rightfully found 
parabola with exponent 3/2 is the result of conical and pyramidal behavior [1]. 
The iterated tip rounding of 269 nm is thus disproved and the tried application of 
the “Hertzian approach” is obsolete. In fact, elastic work and all kinds of plastic 
work relate in the same way to force and energy [1]. The historical views are 
unphysical and a half-sphere indentation (calotte before the cone-point) would 
require the physically correct non-parabola FN = kπ (R/h − 1/3) h

3/2
 [12]. 

Nevertheless, the authors of [11] put an arrow labeled with “pop-in” at their 
smooth loading curve where there was none. One cannot better manifest the 
widespread false unphysical belief than by putting a “pop-in arrow” to a smooth 
curve in the absence of any pop-in! Clearly, our physical analysis with the Kaupp-
plot of the smooth Al-covered Ni-superalloy loading curve reveals a very minor 
initial surface effect and two straight lines before and after the kink position (both 
with R = 0.9999 regression) in Fig. 10.1. That is evidence for h

3/2
 parabola 

loading curves. This proves pyramidal behavior. The not spherical behavior 
before the kink has already graphically been shown in [12]. The Berkovich of [11] 
must have been sharp (commonly 50 - 100 nm) [12]. Only the correct analysis of 
such published curves of [11] is valid. The kink at 15.4 nm and 252 µN force 
does not indicate an elastic to plastic conversion and neither so a phase-
transition. It clearly characterizes the crossing over two chemically different 
phases. This corrects the previous interpretation of the kink in Fig. 10.1 as a 
“sphere to effective cone conversion” in [13] when the physical analysis of 
spherical indentations in [12] was not yet available and the “Hertzian” parabola 
for spheres appeared still credible. Unfortunately, the widespread misuse of the 
pop-in term in connection with iterative analyses is still widely used. That’s very 
dangerous, when used for technical materials under mechanical load, as phase-
transition inreases the probability for cracking 
 

 
 

Fig. 10.1. The physical analysis of the Berkovich indentation onto the 
“matrix phase” (10 µm thick) within the diffusion zone (25 µm thick) of an 
Al-coated Ni-superalloy; the load vs displacement curve data were taken 

from the Fig. 10.10 in [11] from 0 - 50 nm depth 
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10.3.2 Stishovite, Seifertite and Monoclinic Polymorph of SiO2 
 

Stishovite is tetragonal SiO2, with Rutil-type space group (P42/mnm). It is named 
after Sergey H. Stishov, Russia, for its first synthesis from α-quartz (density of 
2.65 g/cm

3
) at 20 GPa and 1100°C [14]. A more recent synthesis treated fused 

quartz at 20 GPa and 1100°C [15]. It is one of the densest (4.287 g/cm
3
) 

polymorphs known from SiO2 [16]. It had first been found together with Coesite in 
meteors from Mars and later collected from Moon [17], or from atomic bomb 
explosion craters, in some diamonds and now in ultrahigh pressure 
metamorphism rocks around the Globe. 
 
Orthorhombic Seifertite (Pbcn) with unusual six-fold Si-O coordination (named 
after Friedrich Seifert, Bayreuth, Germany), was described in [16]. 3 years later, 
space group Pbcn or Pb2n and 4.29 g/cm

3
 were discussed by [18], and it was 

synthesized in 2013 (see below). A monoclinic post-Stishovite was identified 
together with Seifertite (not orthorhombic Pca21, but monoclinic P21/c) was 
identified by [17,19] in the Martian Shergotty meteorite. All of them are 
metastable at ambient conditions. It appears intelligible, that the first phase-
transition of Stishovite proceeds to Seifertite with still higher density and again 
with the unusual 6-fold coordination of the silicon atoms. The first hint for a 
second phase-transition from Stishovite leads to the structurally identified P21c 
polymorph again with six-fold coordination and the density of 4.30 g/cm

3
. The 

energetic sequence of these is not certain. The minor density differences cannot 
secure the chosen sequence that awaits structural characterization by 
indentation with synchrotron X-ray analysis close to the indented Berkovich, or 
(less reliable) calculations of the energy and suppressiveness. It appears 
impossible that the about 15 known further crystalline polymorphs (known α- and 
ß-forms are counted) at much lower density (1.7 to 2.62 g/cm

3
) and fourfold 

coordination could have been formed upon indentation of Stishovite. However a 
caveat remains, because 8 highest-pressure polymorphous structures of silica 
are listed with references in the Review [17] as CaF2, Fe2N, α-PbO2, I2/a, CaCl2, 
Pa-3, GeO2, TiO2 structures. These structures have been obtained by hydrostatic 
pressurizing or theoretical calculations, but some of them might only exist under 
high pressure. The orthogonal CaCl2-typ ( Pnnm) was found by a second order 
transition of Stishovite [20,21] by hydrostatic pressure in a diamond anvil, but it is 
not quenchable and immediate first order transitions occur around 45 GPa. An 
inhomogenity at nearly hydrostatic pressure change in the rather gradual Raman 
frequency shift has been interpreted to occur from the TiO2-structure into the 
non-quenchable CaCl2 structure at 27°C [21]. An earlier paper with (quasi) 
hydrostatic experiments reported evidence for the CaCl2-structure of a post-
Stishovite polymorph by synchrotron X-ray experiments. But only one phase-
transition above Stishovite was found [22]. 
 
The situation changed with the detection of the quenchable Seifertite and P21/c 
polymorphs. Seifertite could be synthesized from Cristobalite at 20 GPa and 
900°C [23]. Here we will rely on “quenchable” crystalline polymorph structures. 
The unloading curves [24] have smooth shapes, and the fast strain rate of the 
indentations with sharp onset would disfavor the possible CaCl2 structure under 
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these conditions and favor Seifertite and P21c polymorphs. Indentations should 
be a useful tool for the formation and energetics of post-Stishovite polymorphs 
and the transition energies. Also the formation of still higher pressure polymorphs 
at room temperature can be envisaged. 
 

10.3.3 The Indentation onto Stishovite 
 
Indentations and hydrostatic compressions detect the polymorphs as they exist 
under pressure, and they include unquenchable (pressure-less not metastable) 
polymorphs. Both techniques can be performed at various temperatures. Only 
indentation is useful for the calculation of the important phase-transfer activation 
energies [25,26], but temperature dependent indentations of Stishovite wait for 
their execution. Both techniques have been used for structural analysis with 
highly focused synchrotron X-ray analysis. The much slower hydrostatic pressure 
increase allows for equilibrations and the structural elucidation with X-ray 
analyses under pressure is easier also with various spectroscopic analyses. 
Raman spectroscopy has also been used with indentations. Syntheses with fast 
quenching (temperature and pressure) obtain only the quenchable polymorphs. 
Either indentation or hydrostatic pressing alone cannot distinguish all useful 
qualities. 
 
10.3.3.1 The Indentation of Stishovite: Indentation Work and Transition 

Energies for 2 Post-Stishovites Despite 3 Published Pop-Ins 
 

The Berkovich indentation onto (110) of a synthesized Stishovite single crystal 
[24] provided a loading curve with three short pop-ins at 0.98 mN (with 25.80 
nm), at 8.53 mN (with 104.49 nm), and at 18.58 mN (with 160.13 nm) force (with 
depth). They are 1.0, 0.5, and 2.7 nm wide, respectively. However [24] deals only 
with the first of its 3 published pop-ins. Only the repaired published loading curve 
could be physically analyzed. The Kaupp-plot reveals a short (<40 nm) initial 
surface effect (including tip rounding) and two phase-transitions, indicating 3 
polymorphs up to 22.5 mN load. The regression line data are given as inserts 
in Fig. 10.2. They contain the penetration resistance values (physical hardness) 
as the slopes and the force axis cuts. The equalization of the regression formulas 
provides the phase-transition onset kinks. The first kink (phase-transition onset) 
is at 9.71 mN with 110.74 nm, the second kink at 17.25 mN with 152.89 nm. 
There is, of course, no correspondence at all with the first of the published pop-
in. The second published pop-in is 1.19 mN before the first phase-transition. The 
third published pop-in is 1.33 mN after the second phase-transition. Clearly, none 
of phase-transition values correspond with the published pop-in values. All 
phase-transitions occurred without any pop-in contribution, and published pop-ins 
are therefore not connected with phase-transitions, and they are not a 
prerequisite for phase-transitions. The reasons for published pop-ins have been 
discussed in Section 10.3.1, and their missing significance is again confirmed by 
these results. Perhaps some distortions by inhomogeneities, or disorders would 
have required the use of different crystal sites for indentation. The two phase-
transitions indicate two post-Stishovite polymorphs as formed endothermic with 
higher penetration resistance (Table 10.1) and a third one would be at a third 
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kink as expected for an indentation at higher load. At the first kink we have #1 
and #2 and at the second #2 and #3 polymorphs. The #3 polymorph 
compression proceeds towards a firmly predicted #4 polymorph that is however 
not reached at a higher force kink point, due to the cut off of the indentation load. 
22.5 mN is not very high for microindentation. The regression line equations are 
used for the calculation of indentation work Windent and transformation energies 
Wtrans. These results and their normalized values are listed in Table 1. 

 

 
 

Fig. 10.2. The physical FN vs h
3/2

 plot (Kaupp-plot) from the indentation with 
Berkovich onto the (110) Stishovite after removal of the pop-in excursions 

and correction of the penetration values with inserted regression 
equations; the short horizontal lines indicate the kink positions (phase-
transition onsets) where the regression lines (not drawn) intersect; the 

original force-depth data are taken from [24] 

 
The phase-transition onsets are clearly seen and marked at the sharp though 
shallow kinks in Fig. 10.2. All transitions are endothermic and a projected third 
post-Stishovite is not reached due to the cupping of the indentation force. The 
phase-transition onset forces do not closely correlate with the transition energies. 
But what are the structures of these post-Stishovite polymorphs? More answers 
are provided by the calculated indentation work Windent and the also calculated 
transformation energies W trans that have been arithmetically calculated without 
iterations and without requiring the common energy-law violations of ISO-
standards [25]. 
 
One has to distinguish indentation work W indent, applied work Wapplied, and 
transition energy Wtrans. Before calculations, the published loading curves must 
be repaired from any pop-ins by removing such instrumental hold-periods with 
adjustment of the depth readings. Only required are the well-known formulas, as 
repeatedly published in [4] (their formulas 3 - 7). These correct for surface effects 
(axis cut Fa) of the physically analyzed loading curves. They calculate from the 

phase-transition onsets the balance of full Wapplied − Wapplied of the involved 
polymorphs. Such calculations have amply been published before [3,4,5,25,26]. 
The results are collected in Table 10.1. 
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Table 10.1. Berkovich micro-indentations; the arithmetically calculated indentation, application, and transition energies of 
Stishovite-SiO2 with 2 post-Stishovite polymorphs and of MgO with 2 post-MgO polymorphs 

 
Stishovite#1 
onto (110) 

hkink nm FNkink mN Windent/mN 
mNnm/mN 

Wapplied 
mNnm 

 Wapplied mNnm Full 
Wappl mNnm 

Wtrans  
mNnm 

normalized Wtrans 

mNnm/mN 

#1 to #2 110.7354 9.71019 49.1884 520.40020 520.40020 537.63062 17.23042 1.77447 
#2 to #3 152.8857 17.2513 32.1117 692.46215 1212.8624 1318.7383 105.87597 6.13727 
#3 up to 522.588 mN 176.30

a
 22.588

b
 20.5818 581.12649 1793.9889 1991.1322 197.14335 8.72779 

MgO N˚1 onto (001)         
N˚1 to N˚2 99.29877 13.8862 25.662655 705.9483 705.9483 689.43882 243.99447 17.57107 
N˚2 to N˚3 243.7261 29.9345 102.93585 3851.6663 4557.6146 3647.9229 −909.691 −30.38941 
N˚3 up to 70 mN 475

a
 70.0

b
 273.5352 23,934.433 28,492.047 15,771.663 −8122.15 −116.0307 

a
hend; 

b
FNend
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The general calculation sequence is clear from Table 10.1. One obtains 
Wapplied1 from the triangle 0-FNkink1-depth h. The Wapplied2 requires integration of 
the loading curve for the corresponding range to obtain the W indent2 values that 
are multiplied with 1.25 to get the Wapplied2 values. Their corresponding sum and 
the full Wapplied value are obtained as for the Wapplied1 with the corresponding 

triangles. The balance is obtained by subtraction (full Wapplied −  Wapplied) to 
obtain the Wtrans values that are normalized by division through the 
corresponding force ranges. The W indent values are not listed for space reasons, 
because they are easily obtained as 0.8 Wapplied [25]. The normalized Windent/mN 
values show the energy differences of the three polymorphs. It decreases from 
Stishovite#1 to #2 and #3. Conversely, there is much increase in the required 
phase-transition work the higher the energy of the polymorph. Such energetic 
properties are not available by other techniques and should be an empiric basis 
for the test of quantum mechanical calculations. 
 
It is also seen in Table 10.1, that both phase-transitions of Stishovite (describing 
the three polymorphs) are highly endothermic and that the normalized 
transformation energies here with respect to the transition onset force are 
increasingly high. Every one of the three polymorphs has its particular quality that 
is increasing with the normal force and thus pressure. The normalized transition 
energy values Wtrans per mN of Stishovite are independent of the length of their 
stability ranges (the last one is cut off). 
 
We can now ask, whether the proposed sequence of #2 before #3 is correct. The 
in Section 3.2 described quenchable orthorhombic Seifertite (Pbcn; 4.303 g/cm

3
) 

is the first guess for #2 in Table 10.1. The second guess for #3 is the also 
quenchable monoclinic polymorph (P21/c; 4.30(2) g/cm

3
) [19]. The reported 

densities are too close for deciding which one should be #2 or #3 in Table 10.1. 
And there is the possibility for as yet unknown unquenchable post-Stishovite 
polymorphs. A safe answer to these questions can only provide the onsite 
indentation at a synchrotron with highly focussed X-ray analyses. It is however 
certain that both of these endothermic formed polymorphs maintain the six-
coordination of the silicon atoms. This excludes all of the numerous lower energy 
polymorphs with four-coordination to the silicon atoms. However, their transition 
energy contents are rather large in Table 10.1 and that should be helpful for 
decisions by calculations, as long as the synchrotron studies are lacking. The 
multitude of proposed structures is described in Section 10.3.2. Further 
indentation experiments with higher loads than 25 mN are advisable for finding 
still higher polymorphs of SiO2. The big advantage of indentation is the energetic 
characterization that is only possible with this technique. The reason why 
(post)Stishovite does not exothermic react to give the 4-fold coordination of 
Coesite etc, or α-quartz that transforms exothermally to an amorphous phase 
with k1 = 2.5443 and k2 = 1.8609 µN/nm

3/2
 [5] is their enormous density due to 6-

fold coordination of Si. That makes any internal expansion difficult and prefers 
cooperative transitions with minimal internal movements by retaining the 6-fold 
coordination and retaining the high density. This view is also supported by the 
very high penetration resistance values k from the Kaupp-plot (the physical 
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hardness) of 0.0086 to 0.0117 mN/nm
3/2

 (Fig. 10.2). These values reach and 
surmount the ones of superalloys [4]. 
 
10.3.3.2 The Stishovite Indentation with Published Broad Late Pop-In 
 

It appears of course appropriate to compare the indentation of Section 10.3.3.1 
with the 3 years older indentation, again onto (110) of Stishovite, and again with 
a Berkovich indenter. Smaller polycrystalline Stishovite grains (50 - 200 µm wide) 
were used and the results “should be regarded as for single crystals” [27]. These 
authors published one late large “pop-in” (20 nm wide) starting at 14 mN load 
and 128 nm depth. After the repair of the loading curve, the Kaupp plot revealed 
again two phase-transitions very close to the ones in Section10.3.3.1, with the 
very similar but slightly larger k-values of 0.0092, 0.0116 and 0.0133 mN/nm

3/2
. 

The kink values are at lower loads (8.464 and 15.273 mN). After removal of the 
pop-in and the corresponding depth correction, the phase-transition depths (hkink) 
are calculated lower at 97.757 and 134.136 nm than in Section 3.3.1. One of the 
phase-transitions is situated very far before and the other 6.8 nm behind the 
published pop-in from the 128 - 148 nm excursion length before the repair of the 
loading curve. That is again in support to the self-evident removal of pop-ins. The 
differences of the three k-values from Fig. 10.2 increase from +6% to +12%. All 
of that points to a calibration problem of the unspecified indentation instrument 
due to the iterative ISO 14577 calibration [28]. An “error of ±5% for the 
calibration” has been claimed. As the precise conditions are not reported in [27] 
(e.g. sample purity, origin of instrument, compliance correction, calibration of 
force and depth), we refrain from the energetic calculations but rely on the 
apparently better defined measurements: In [24] the tip radius was measured 
with tapping mode AFM, the single crystal was larger, the distances between the 
several impressions were 20 instead of only 10 μm, and the tests were at 
constant strain-rate of 0.05/s. Instrument calibrations should be direct but not 
indirect by using ISO 14577 standards that were obtained by two consecutive 
iterations the first with 3 and the second with 8 free parameters [28]. And there 
were experimental errors at the force linearity and severe mix-up of standard 
materials in [28], as revealed in [5]. 
 
It is again very clear that the removal of the pop-ins from published loading 
curves works well, whatever their appearance might be. They might be absent, 
broad, or multiply narrow, early, later, and very late. 
 

10.3.4 The Published Huge “Pop-In” of Periclase MgO 
 
While the behavior of the highly energetic and rarely available metastable 
materials in Section 3.3.with unusually high six-coordination to silicon atoms 
might appear somewhat special, one has to check at least one indentation of a 
normal stable material with pop-in accordingly. For example, the names 
Periclase for the MgO mineral (NaCl-type structure) already denotes easy 
cleavage all around its crystal, which can be a weak point for cracking and for 
pop-in production. Nevertheless, the B1 into B2 phase-transition of MgO upon 
hydrostatic pressure occurs between very high pressures of 429 and 562 GPa at 
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room temperature or at much higher temperatures [29]. One could therefore not 
safely expect a phase-transition by a Berkovich micro-indentation onto 
magnesium oxide. However the reported terraces on its indented freshly cleaved 
(100) plane should increase the probability for pop-in production when the 
descending tip hits a terrace step with its skew side or edge. This has already 
been pointed out in Section 3.1. Micro-cracking upon Periclase indentation far 
from the tip edges could be excluded, as there was none of the short depressive 
spikes in the smooth loading curve, which are known from [3]. The authors of [9] 
called their published pop-in at 9.501 mN from 75 - 125 nm a “kind of accident” at 
the conversion from “elastic deformation” to “elasto-plastic behavior”. The 
comparison with an indentation of Al without pop-in in [9] is misleading: there 
were no terraces on it. The published loading curve of MgO required therefore its 
elucidation. A smooth loading curve was obtained for the physical analysis after 
removing the published pop-in and the corresponding correction of the 
penetration values. Following an initial surface effect up to <30 nm depth, the 
Kaupp-plot from the so repaired smooth loading curve with its regression lines 
can now obtain the kink positions by equalizing the corresponding regression 
lines (the initial effects including tip rounding are of course not part of the 
regression). The first exothermic phase-transition is at 99.299 nm. It is marked 
with the first vertical line in Fig. 10.3. This is the depth-corrected position within 
the now removed autonomous decoupled instrumental hold period. Therefore, 
the phase-transition force of 13.886 mN is above the previous hold-force (9.501 
mN) of the removed pop-in, as expected. Clearly, the phase-transition did neither 
occur at the start of the published pop-in, nor at its end. The regression lines 
cover data points from before and from after the force-hold-period. This 
observation proves: the published pop-in did not at all influence the exothermic 
phase-transition onset. This is an especially lucky feature. It undoubtedly 
confirms the new recognition of the missing significance of “pop-ins” that must be 
avoided or removed. It certifies the undisturbed calculation of the indentation 
works and the transition energies despite published pop-ins. Published loading 
curves with “pop-ins” must indeed be repaired for any physical analysis both for 
exothermic and endothermic phase-transitions (Table 10.1). 
 
Our process is highly precise. While the plot from the first kink (first vertical line) 
to the end point might be judged uniformly (this would correlate with R

2
 = 

0.9996). However, the differently drawn data points of the Excel calculation 
indicate another very shallow kink of two regression lines (not drawn) that 
correlate with R

2
 = 0.9998 and 0.9997, respectively. The physical analysis thus 

reveals three polymorphs up to at least 76 mN load. The first transition produces 
exothermic the first post-MgO polymorph. And this polymorph produces at higher 
force exothermic the second post-MgO polymorph. A projected third post-MgO 
kink is not reached due to the cupped off indentation force. The transition 
energies are listed in Table 10.1. The energetic data were again arithmetically 
calculated with the well-known closed formulas in [3,5]. 
 
For the structures of post-MgO polymorphs we have to consider that an early B1 
(NaCl type) to B2 (CsCl type) structural transformation of MgO at 13.9 and up to 
30 and up to 70 mN load of a Berkovich indenter (Table 10.1) is not imaginable in 
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view of the required super-high hydrostatic pressure for this phase-transition [29]. 
The early transition onset of the first transition should therefore only reach a first 
twinned MgO, requiring the high mechanical stress due to high crystal energy of 
B1-MgO (3795 kJ/mol [30]) and that the first MgO-twin upon further stress 
transforms exothermic to a different second twin, which is stable to more than 67 
mN load at the cut-off. Further post-MgO polymorphs require higher load 
indentations. 
 

 
 

Fig. 10.3. Kaupp-plot of the Berkovich loading data onto (100) of MgO as 
calculated from the FN vs h curve of [9] after removing the pop-in and 

adjusting the penetration values; the vertical lines indicate the intersection 
of the regression lines; the insert (FN = 0.0133h

3/2
 + 0.7258; R

2
 = 0.9998) 

shows the higher resolved initial part including initial effect before the 
horizontal line 

 
Supporting evidence for these conclusions are the synthesized MgO-twins by 
epitaxial pulsed laser deposition from (111) faces in [111] direction [31] or by 
sintering of MgO (m.p. 2800˚C), at 2200-2300˚C into a structurally known 
monoclinic MgO-twin (a 6.443, b 5.9385, c 5.699, ß 91˚16') [32]. Two different 
deformation twins of MgO from {110} to [110] and from {111} to [112] slip 
systems have also been calculated [33]. This can provide a hint for the energetic 
sequence of the ones from micro-indentation in Table 10.1. Such twinning was 
apparently overlooked in the hydrostatic experiments. 
 
The differences between the energetic data of metastable Stishovite and stable 
MgO are striking. While the penetration resistances are surprisingly pretty close, 
the first phase-transition energy Wtrans of MgO is about 10 times higher. 
Conversely, the indentation energy W indent of Stishovite is about twice as high. 
Clearly, both chemical and crystallographic effects play their decisive role. 
Stishovite has its unusual six-coordination of oxygen to silicon that cannot be 
abandoned at increasing pressure. Actually the compression of the Si-O bonds 
enforced the six-fold coordination of Stishovite under drastic conditions for 
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optimal space-use. The post-Stishovite polymorphs had to retain this unusual six-
fold coordination and retain that feature when producing higher energy structures 
with minimal internal migrations in cooperative processes. Further post-Stishovite 
structures will be highly interesting and should be created by indentation at 
higher load. Conversely, MgO with its high crystal energy retains as much as 
possible of its favorable structure by internal migrations for the twinning at high 
pressure. The further constrained first twin continues at higher load with 
exothermic transition to the more stable twin. Apparently more demanding 
internal migrations reach the more stable second twin of MgO. One does not yet 
know the necessary force for the transition from coordination number 6 to 8 that 
is required for the projected phase-transition to B2-MgO. Interestingly, all of 
these exothermic migrational transitions of MgO require much more applied work 
for exothermic transitions than the endothermic phase-transitions of Stishovite. 
Chemical bond energy changes upon bond-length compression and the size and 
electronic structure of the central atoms (Mg or Si) in combination with crystal 
energies play their roles for these phase-transitions. 
 

10.4 CONCLUSIONS 
 
This paper reports two phase-transitions, each of micro indentation loading 
curves from the metastable Stishovite and from magnesium oxide. The projected 
third post-Stishovite and the projected third post-MgO are not reached due to the 
cupped indentation forces, but the way to them has been paved. These further 
polymorphs are firmly predicted for indentations up to higher loads. The 
published “pop-ins” within the loading curves had to be removed. The here 
described repair technique is highly important for the physical use of important 
published force vs. depth curves onto extremely precious materials, such as a 
good single crystal of Stishovite. Autonomous force holding (“pop-in”) is a purely 
instrumental distortion. In the case of an Al-coated Ni-superalloy “diffusion zone” 
there is not a phase-transition but the crossing over two chemically different 
phases. It occurred without a published “pop-in”, despite such strangest claim. 
Also in that case the widespread false belief on elastic-plastic conversion with 
“pop-in” had to be challenged. Unfortunately, the widespread belief in “pop-ins” is 
very dangerous. The change from elastic to plastic indentation does not change 
the smoothness of the loading parabola FN = k h

3/2
 of all normal conical or 

pyramidal indentations, but phase-transitions produce unsteadiness that is 
detected as sharp kinks in the FN vs. h

3/2
 Kaupp-plot. The so enabled search for 

phase-transitions for all solid materials is of practical importance. Phase 
transitions lead to polymorph interfaces that are sites for cracks’ nucleation with 
catastrophic failures. 
 
Published “pop-ins” are evidently due to the hype with them and the complicated 
theories about them with claiming spherical indentation just at their show-up, 
while spheres give no parabola and the so used exponent 3/2 on h is exclusively 
valid for cones, pyramids, and wedges. However, “pop-ins” are machine 
generated force holding with extrapolation of apparently not recognized fake 
depths. “Pop-ins” must be avoided by repetition of the measurement in the 
absence of the external or internal disturbing factors. If such distortions are 
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published at whatever position, they are not at all indicating any materials’ 
properties. Published “pop-ins” are not resulting from the elastic to plastic 
conversion. They must and can be removed with the adjustment of the depth 
readings by subtraction of the produced fake-depths. Such self-evident repair of 
published loading curves is essential and simple, as outlined in Section 10.3.1. 
Creep correction during the short force hold at low force is mostly too small for its 
execution requirement. The arithmetically calculated phase-transition onsets, as 
revealed by using the Kaupp-plots for the repaired loading curves, are before, 
within, and after published “pop-in excursions”. Phase-transitions are not 
accompanied by “pop-ins”. This apparently for the first time achieved new 
cognition replaces all false historical claims that are unfortunately still pursuit with 
enormously complicated untenable argumentations. Several reasons for 
instrumental distortions are listed for the first time in Section 10.3.1. 
 
This paper also points out that the correct calibration of the indentation 
equipment is important for correct numerical results. Secondary calibrations with 
the ISO 1457 standards are unsuitable, because of the mix-up of materials that 
occurred upon their generation with poor force calibration, inconsideration of their 
phase-transitions and iterations with at first 3 and then 8 free parameters, as 
revealed in [5] by checks with the Kaupp-plot. Such standards cannot be 
accepted for physical calibrations. But materials’ standards are not necessary for 
the absolute physical analyses. ISO, instrument suppliers and certification 
agencies are required to use and enforce primary direct calibrations of the 
indenter instruments. 
 
The two structurally known meteorite post-Stishovite polymorphs Seifertite and 
the monoclinic post-Stishovite can now easily be prepared for further 
investigation by microindentations onto Stishovite. Higher energy post-Stishovite 
polymorphs’ onsets and energies are safely expected by higher force micro-
indentation, and if necessary by depth sensing macro-indentation. The single 
crystal that has been used for Fig. 10.2 was already large enough for 
indentations at higher load micro- or macro-indentation above 25 mN. Also the 
B1 to B2 phase-transition onset and energies of MgO await further indentations 
at higher well calibrated loads. 
 
It will be important for earth sub mantel explorations to indent all of the mayor 
minerals occurring in the lower earth mantle and study their high and highest 
energy phase-transition onsets and energies also temperature dependently. This 
will lead to a better understanding of the earth crust with its tectonic properties 
and influences. It will also be important to study all old and advanced technical 
and constructional materials for phase-transition onsets and energies to help 
avoiding catastrophic crashes of e.g. airliners, all types of fast running propellers, 
turbines, bridges, buildings, commodities, etc. Cracking is facilitated at 
polymorph interfaces. Their mechanical and thermal stress must be well below 
their as yet unknown phase transition onsets. As these remained undetermined 
for historical reasons they have now to be elucidated by physical indentation. 
 
 

https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=99185#f2
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10.5 OUTLOOK 
 
For the future, it will be important that industry shall be enabled to use the here 
described results and physical analysis techniques for the correction of false 
characterizations of technically important materials and for producing physically 
correct results. To reach that goal, the independent academic teachers must 
abandon their very complicated historical thinking and teaching that prevents 
them from disagreeing with the striking energy violation of ISO. As universally 
deduced in [25], the violation is 20% for the correct loading exponent 3/2 on h—
or it calculates to 33.33% upon use of the incorrect exponent 2 on h of the 
undeniable pressure work. It cannot be created workless from nothing! However 
ISO 14577 still enforces to believe that all applied force is used for the 
penetration. ISO calls the normal force “P”, which in fact means 1.25 FN (see 
Section 2). This severe violation of the energy law is responsible for prescribing 
the false exponent 2 on h for cones and pyramids, which impedes phase-
transition detections with their onsets and energies. It also falsifies dimension 
and value of ISO hardness, the values of ISO modulus, and the numerous 
mechanical parameters that are deduced from them. This must no longer be 
taught in classes for students and should help for complaints against ISO 14577 
and also against handbooks of the indentation equipment suppliers. Such 
complaints shall be directly addressed towards ISO 14577 agents in addition to 
the present author who continues with direct complaining at ISO in Germany. It is 
certainly a difficult task for worldwide ISO to thoroughly modernize their 14577-
Standards for complying with the physical basis at the expense of historical belief 
against elementary physics. Physically sound standards are indispensable for the 
instruction of the certification agencies, (between agencies and them) for their 
requiring this states-of-the-art upon the certification of the producing industries. 
The latter are of course bound to their certification documents and cannot act 
against them. Also instrument builders must change their handbooks and provide 
the physical calculation routines for the physical characterization techniques and 
extensions to the before not even thinkable applications. This will not only 
increase the value of the indentation techniques, but it is a requirement for daily 
safety to produce physically correct data. In the meantime independent 
researches are urged to use the here presented and cited new physical 
possibilities and publish their data on phase-transition onsets and energies. That 
includes the here not addressed temperature dependent indentations for the 
activation energies of phase-transitions. After all, liability problems cannot be 
excused with disproved historical beliefs any more. 
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ABSTRACT 
 

This chapter analyzes the force vs depth loading curves of conical, pyramidal, 
wedged and for spherical indentations on a strict mathematical basis by explicit 
use of the indenter geometries rather than on still world-wide used iterated 
“contact depths” with elastic theory and violation of the energy law. The loading 
curves, which have now been accurately examined, offer undetected phase-
transition. This contains a clear correction for the variable depth/radius ratio, 
which was previously ignored, for the spherical indentations. Fortunately, no 
data-fitting, simplification, or fake simulations must be utilised in the 
determination of a material's properties; only algebraic formulas. By equating the 
linear regression lines from the mathematically linearized loading curves, the 
penetration resistance differences of the materials' polymorphs offer accurate 
intersection values as kink unsteadiness. The phase transition onset values for 
depth and force are indicated by these intersections. Energy and phase-transition 
energy calculations are made possible by the accurate and precise estimation of 
phase-transition onsets. The derivation of the novel algebraic equations is most 
straightforward and reproducible mathematically. There are no limitations on the 
behaviour of elastic or plastic materials, and no need to utilise distinct formulas 
for various force ranges. This is now also achieved for spherical indentations. 
Their formula as deduced for plotting is reformulated for integrations. The unique 
indentation formulas provide previously unattainable access to the phase-
transitions' onset, energy, and transition energy. (Windent) allows now for 
comparing spherical with pyramidal indentation phase-transitions. Only low 
energy phase-transitions from pyramidal indentation may be missed in spherical 
indentations. The spherical calottes' relatively shallow penetration depths are 
calculated extremely closely for both cap and flat area values. As a result, the 
indentation phase-transition onset pressure may be calculated and successfully 
compared to the results of hydrostatic anvil pressurising. Low energy phase-
transitions are frequently overlooked beneath the anvil; therefore, this is highly 
beneficial for their interpretations and further supports the unparalleled simplicity 
of the indentation experiments. The numerical examination of previously 
published germanium data has compared pyramidal, spherical, and hydrostatic 
anvil stresses. The preexisting, commonly accepted theories and guidelines for 
historical indentation are contested. It is easiest to check falsely generated and 
even published so-called "experimental" indentation data from the literature. Due 
to their mathematical inadequacies and the pressing need for daily safety with 
stressed materials, they must be corrected. The issue of faulty ISO 14577 
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standards for inaccurate and inadequate material categorization is what spurred 
the author to write this essay. By employing our closed formulas, which are 
founded on indisputable geometric and algebraic calculation laws, we can 
reinforce and advance the mathematical truth while minimising catastrophic 
failures, such as in aviation.   
 

Keywords: Geometry of indenters; algebraic solutions; false mathematic 
concepts; germanium; pyramidal and conical indentation; spherical 
indentation; anvil pressuration. 

 

11.1 INTRODUCTION 
 

A challenging mathematics issue involving normal indentations on flat surfaces 
was first addressed by Boussinesq in 1882 [1]. Starting with elasticity theory has 
traditionally been the approach taken to try to solve the load/depth relation. The 
materials by indentations with the total applied force for a (since 1992 iterated) 
indentation  area  were  improperly  described  by  Young's  modulus  E  (that  is 

unsuited  for  indentations)  and  Poisson's  ratio  .  Hertz's  influential  paper  from 
1882 [2] only discussed the mathematical touching between balls (with radius R) 
and balls with flat surfaces, but not penetration.  He deduced a contact pressure 
p  =  kα

3/2
  where  α  describes  the  impact  area.  He  repeated  that  he  did  not 

describe penetration in [3], but all followers who refined this approach kept with a 
force P per indentation area a (circle of contact) when the half-sphere penetrated 
at increasing force. They had to deal with an additional parameter the indentation 
depth  h  and  kept  with  the  exponent  3/2  on  the  penetration  depth  (h3/2

).  Much 
effort was put to the refinement in the early 1900ies, but advancements became 
over  complicated,  and  also  conical  indentation  had  to  be  mathematically 
described. Really useful equations for practical use had to wait until 1939, when 
Love in [4] very laboriously deduced formulas for rigid cones. His approach was 
again  “elastic  theory”  and  force  per  area  and  his  solution  is 

        t              (below we replace P by FN for normal force and do not 

violate the energy law). Thus, the depth was squared for cones and pyramids in 
[4]. Only the proportionality factor was changed in 1965 with the very laborious 

deduction  of  Sneddon  in  [5]  to  read                           that  has  been 

widely accepted. He also deduced a “solution” for spherical indentation by using 
Hankel transforms and the theory of dual integral equations. His formula (6.15) 

for spheres is                                    , where                   . It 
at  least  shows  that  the  situation  is  much  more  difficult  than  “Hertzian  theory”. 

When  the  substitution  is  made  one  obtains  an  equation                     
                      with  a  multitude  of  terms  and  with  numerous  different 
exponents  on  h.  Only  this  part  of  Sneddon’s  work  was  ignored.  20  years later 
Johnson  came  back  in  [6]  with  a  formula  by  “summarizin   Hertzian  theory”  to 

read F                  (where  E*
  is  reduced  elastic  modulus)  for  the  sphere. 

This  again  did  not  consider  the  particular  geometry  of  the  sphere  calotte. 
Interestingly, Oliver and Pharr cited in [7] the reference [5] but formulated “P = 
αh

m
 for spheres “with m = 1.5”, arguing that the sphere can be described as a 

solid of revolution giving “a smooth function”. But they did not tell that this was 
Johnson’s “summarized” formula in [6]. Unfortunately, the geometrically unsound 

 

https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref3
https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=100345#ref7
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formulas in [7] and in [6] became ISO-ASTM standard (International 
Standardization Organization-American Society for Testing of Materials) that is 
still generally enforced. For example, the authors of [8] calculated modulus 
values E from the elastic contact with spherical indentation “accordin  to the 
classical Hertzian theory” with Johnson’s formula in [6] (“below the yield point”). It 
did not help that the experimental loading curves were at variance with these 
formulas. The exponents were just believed but not checked. Such checking was 
at least possible since 2004 as shown in [9] and thereafter with the FN vs h

3/2
 plot 

from the present author’s group. This plot (later from believers disdainfully 
termed as “Kaupp-plot”) disproved and disproves the more than 1000-fold falsely 
claimed exponent “ ” on h (as enforced by ISO) for all conical, pyramidal and 
wedged indentations. It also discloses whether published spherical indents were 
truly spherical. However, several researchers continued to simulate spherical 
indentations as one exponent parabola with h

3/2
 according to Johnson’s formula 

in [6] and claimed that their “experimental curves” would support such claims. 
Fortunately, such published “results” of “spherical indentations” have been and 
can be disproved by exponent check with the FN vs h

3/2
 plot (we now also call it 

“Kaupp-plot”), which, of course, cannot give straight lines neither for the 
simulation and nor for the published so called “experimental” curves. Such 
publications are disastrous and some examples for such clearly manipulated 
data are published in [10,11]. Some updates in this area are available elsewhere 
and may find attention of the readers [12-14]. We refrain from listing further 
examples; they are easily checked in the literature. [12] is a Book Section review 
paper for the common ISO 14577 approach of indentations onto biological 
material with some critics that adhesive contact is often not properly applied. [13] 
uses FEM simulations for "Young's modulus" determination from unloading 
curves on the basis of pseudo cones and tries to circumvent differences with 
experiment by using a new factor ß. [14] deals with "approximate analytical 
formulas" for indentation pile-up from sphere and cone. We might question 
whether it is worth publishing more and more reviews of the ISO 14577 related 
fittings, iterations, and simulations rather than either reporting correction of 
dangerous tabulated unphysical mechanical properties of undetected 
polymorphs, instead of those from pristine materials for more reliable AI. 
Particularly rewarding would be reports of indentations on the basis of universal 
physically sound and repeatable calculation rules for the finite avoidance of 
polymorph interfaces under stress for safety reasons. The here cited disclosures 
and our papers with mathematical deductions on the basis of undeniable closed 
mathematical equations for indentations have not yet occasioned ISO-ASTM to 
thoroughly revise their incorrect ISO 14577 standards, falsely enforcing the 
producing industries via the Certification Agencies. We therefore extend our 
mathematical deductions for conical, pyramidal, wedged and spherical 
indentations and report various unprecedented application. This also allows for 
comparison of unchanged spherical indentations with hydrostatic techniques. 
 

11.2 THE GEOMETRICAL DEDUCTIONS OF INDENTATION 
FORMULAS EXCLUDING ITERATIONS 

 

All mathematical deductions in the Introduction started with the indented surface 
area, and by applying the elasticity theory. They ran into enormous mathematical 
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problems that could for a long time not be solved since 1882 with practically 
useable formulas. Only the still incorrect formulas of Love in [4] or one of them 
from Sneddon in [5] and of Johnson in [6] were used by Oliver-Pharr [7] in 1992 
by using standard materials that they characterized by two iterations with 3 
followed by 8 free parameters. These iterations were taken up by ISO and 
refined as ISO 14577 standards for performing and analyzing indentations. 
These physically unsound but binding standards had not been challenged before 
2004 [9] when the present author’s group started to empirically prove with the 
Kaupp-plot that such standards did experimentally not concur. It was undeniably 
deduced in 2013 [15] that the standards violated the energy law because not all 
applied force and energy is used for the volume formation. Finally, the 
mathematical foundation of the FN vs h

3/2
 parabola for cones was geometrically 

deduced in 2016 using basic algebra in [16]. The projected or iterated contact 
area related formulas are thus finally disproved for conical, pyramidal and 
wedged indentations. Rather the volume of the indenter has to be used and 
everything is very simple. Previous thinking is thus obsolete. We must now 
comprehensibly repeat the geometrical deduction despite their simplicity, as the 
incorrect ISO 14577 standards are still used by teachers, and enforced to 
Certification Agencies, and thus also for the producing industries. 
 

11.2.1 The Energetics and the Correct Exponent of Conical 
Indentations 

 

The normal force vs depth curves are empirically described since 2004 in [9] and 
also theoretically since 2016 in [16] as parabolas with exponent 3/2 on the depth 
as Formula (11.1). FN is the normal force (we do not use “P” as in the formulas of 
the Introduction), h (µm) is the depth, and k (mN/µm

3/2
) is the material’s 

penetration resistance. The indentation work Windent (mNµm) in Formula (11.2) is 
obtained by integration. The constantly increased normal force from zero to the 
same force gives the applied work Wapplied (mNµm) in Formula (11.3). For the 
maximal force FNmax we substitute FN of Formula (11.1) in Formula (11.3) and 
obtain the Wapplied/Windent ratio of 5/4, which is universally valid for all materials 
upon conical, pyramidal and wedged indentations. Clearly 20% of Wapplied (and 
thus FN) is not used for the penetration with a cone, pyramid or wedge. The non-
consideration is the already mentioned violation of the energy law that led to a 
false exponent on h, which is still enforced by ISO, but urgent subject to change. 
This is the reason why we use FN and not “P” for the normal force. 
 

                                                                                                     (11.1)  

                                                                                                 (11.2) 

 
                                                                                                 (11.3) 

 
The geometric deduction of the correct exponent (3/2 but not 2) in [16] has to 
consider that the penetration of the cone under force is a coupled process of 
volume- and pressure-formation. In practice there is not always only elastic 
pressure but there are mostly all kinds of plastic deformations. We thus sum up 
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all of it to “total pressure”. It creates the 20% loss of force and energy for the 
volume formation with its depth. One has to multiply the force for volume 
formation FNv with the force for total pressure formation FNp in Equation (11.4). 
Now one considers that the total pressure must be proportional to the immersed 
volume of the cone in Equation (11.5), so that FNp is proportional to h

3
 and h 

proportional to    
   

 When the exponent n is 1/3 the exponent m must be 2/3 and 

Equation (11.4) becomes Equation (11.6). As    
   

 is lost for the indentation only 

   
   

 is proportional to the depth in Equation (11.7). The deduction is completed 

with inclusion of the materials property factor, which is the penetration resistance 
or the physical hardness kv or k = 1.25kv (mN/µm

3/2
) as the proportional constant 

to give Equation (8v) and by its multiplication of both sides with the Wapplied/Windent 

ratio = 1.25 that is herewith also deduced. Equation (8v) is used when only the 
volume formation must be considered as e.g. in Section 5. Equation (1) thus 
describes the whole indentation. 
 

      
     

                                                                                        (11.4) 

 

                                                                                           (11.5) 

 

      
   

   
   

                                                                                     (11.6) 

 

   
   

   or                                                                                 (11.7) 

 

       
                                                                                          (11.8) 

 
Equation (11.1) is generally valid for all materials, pyramids and wedges. 
Normalization of these is possible when different indenter geometries among 
these must be compared. The kv value of Equation (11.8v) is the physical 
hardness with respect to the force FNv that is responsible for the volume 
formation. A perhaps technically more important ktot = 1.25 kv value of Equation 
(11.1) is the physical hardness for the whole indentation ktot with FN-tot = 1.25FNv. 
We thus distinguish two different physical hardness values. This FN-tot has to be 
taken into account for the comparison of e. g. pyramidal indentations with 
spherical ones with inconstant Wapplied/Windent ratios. Unlike iterations for false 
“ISO-hardness” we obtain from the correct analysis of Equation (11.1) by plotting 
FN vs h

3/2
 (the “Kaupp-plot”) linear regression lines via Excel

(R)
 calculation and 

detect the phase-transition onsets at the kink unsteadiness of intersecting 
regression lines, because different polymorphs exhibit different k-values. The 
calculated intersection points by equalization of the regression lines at FNkink and 

     
   

 reveals also the practically important indentation energies [cf Equation 

(11.2) and Equation (11.3)]. Furthermore, the phase-transition energy can be 
calculated by using the Equation (11.9) through (11.13). The application of 
Equation (11.9) and Equation (11.11) contain the corrections for axis-cut Fa when 
not zero. All of these have been deduced and are repeated here in modified form 
[17,18] for direct comparison with the spherical situation in Section 2.2. 
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                                                                                    (11.9) 

 
                                                                                       (11.10) 

 

                       
   

                                             (11.11) 

 
                                                                                        (11.12) 

 
            full                                                               (11.13) 

 
The fast calculation of Wapplied1 for cones, pyramids and wedges with Equation 
(11.10) avoids the integration of Equation (11.1). Higher phase-transition Windents 
must be integrated from kink to the next kink etc. The FN2-h2 pair can be freely 
chosen above the kink1. In the case of several phase-transitions one proceeds 
from kink to further kink and after the last phase-transition there is free choice for 
the FNn-hn pair. A practical example will be calculated in Section 3. 
 

11.2.2 The Correct Loading Curve and the Energetics of Spherical 
Indentations 

 
A  one  member  “parabola  with  exponent  3/ ”  for  spheres  in  [6],  [7]  and  ISO  is 
impossible,  because  such  parabola  with  exponent  3/2  is  only  valid  for  cones, 
pyramids and wedges. The geometric deduction of the correct FN vs h curve of 
sphere  calottes  (with  sphere  radius  R  and  calotte  radius  r)  is  more  involved, 
because the depth related R/h ratio is changing during the penetration as shown 
in [10]. As in the conical case one starts again with Equation (11.4) to distinguish 

pressure and volume. The sphere-calotte volume formula is                 . It 
is modified by multiplication with 1= h/h to give the more easily handled Equation 
(11.14) that is more similar to Equation (11.5) containing h

3
 but with the varying 

dimensionless R/h term for its              correction. This correction term can 

be treated like a variable factor that has to be separately applied for every force 
point of the plot, according to Equation (11.18) that is not at all a one-member 
parabola. The sequence of the deduction is now similar to the one for cones. We 
consider  again  that  the  total  pressure  must  be  proportional  to  the  immersed 
volume  of  Equation (11.14) and  we get  the Formulas  (11.15).  Equation 
 (11.18)    is   obtained for FNv after multiplication with the  material’s proportionality  
factor ksv  (s   for  sphere;  v  for  volume)   (see also Chapter 12).  Equation (11.18v) 
describes    only the volume formation and it is used when the penetration part  FNv  
must  be  exclusively  considered.  Equation  (11.18)  for  the  whole indentation 
is obtained by multiplication of both FNv and kv. Equation (11.18) is used for plotting  
FN vs                   . One obtains the  penetration resistance values ks1 and 

ks2 (mN/µm
3/2

), the phase-transition onset with FNkink, the                   value  
and the Wapplied1  at  the  kink  position  from the intersection of the regression lines. 
The necessary hkink must not be calculated. It is  available  from  the  FN  vs h curve  
for FN = FNkink.For the now necessary calculation of Windent we reformulate Equation 

(11.19) and add the axis cut Fa (+, 0, or -) to give (11.20). Its integration gives  
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 Equation (11.21) for Windent. The Wapplied2 is calculated from FNkink to FN2 (here      
chosen at FNmax). The balance of full Wapplied −  Wapplied is the phase-transition      
energy Wtransition as in Equation (11.13). A practical example will be calculated in 
Section 11.4. Equation (11.18v) will be used in Sections 4, 5, and 6. 

 
                                                                                        (11.14) 
  

                                                                                        (11.15) 

 

          
                                                                          (11.18v) 

 

        
                                                                               (11.19) 

 

                                                                                   (11.20) 
 

                  d                                               (11.21) 
 

 

11.3 THE PYRAMIDAL INDENTATION CALCULATION OF 
GERMANIUM 

 
For the numerical exemplification, the published data of the semiconductor 
germanium are chosen from the literature. This covers pyramidal (Berkovich 
diamond), spherical (diamond) indentations, and hydrostatic anvil compression. 
The analysis of the Berkovich indentation onto cubic germanium from [19] 
according to Equation (11.1) is depicted in Fig. 11.1 with the inserted regression 
line equations after a short initial surface effect (including the inevitable tip 
rounding). The proportionality of Windent = 0.8Wapplied (Equation (11.2) and 
Equation (11.3)) for a loading parabola with exponent 3/2 in [15] makes it 
particularly easy to calculate Windent for every chosen work so that normalization 
per force unit provides comparable values for different materials. The phase-
transition kink position by equalization of the regression lines is at 4.149 mN and 
0.151 µm. The pristine polymorph withstands a phase-transition up to 0.1342 
mNµm applied work and Windent1 is thus 0.1074 mNµm. With Wapplied2 = 1.7927 
and full Wapplied = 2.3059 mNµm the phase transition energy into the second 

polymorph calculates easily as full Wapplied − Wapplied (Equation (11.13)) to give 
Wtransition = 0.37898 mNµm from kink to 15.25 mN load. These are after 
normalization per mN 0.03414 mNµm/mN. Such transition energies based on 
physically valid application of geometry and arithmetic calculation rules are not 
available by any other means. Unfortunately, we could not search for further 
phase-transitions of germanium, due the smoothness lack by the repeated load-
unload sequences at higher loads in [19]. 
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Fig. 11.1. Normal force vs depth
3/2

 plot upon Berkovich indentation onto 
germanium with inserted regression line equations; the vertical line cuts 

off the initial surface effect; FNkink is at 4.149 mN; the original data from the 
FN vs h curve are taken from Fig. 11.5(a) in [19], but only up to 0.3 µm depth 

(at 15.25 mN) before numerous load-unload sequences that detract from 
the smoothness of the further force-depth curve. 

 

11.4 THE SPHERICAL INDENTATION CALCULATION OF 

GERMANIUM 

 

The spherical indentation onto germanium at a rate of 7 mN/s follows  Equation 

(11.18) and Equation (11.19), but not Johnson’s equation of a one exponent FN  
h

3/2
 parabola for spheres in [6]. The publication of [20] depicts in its Fig. 1(a) the 

loadin  curve of crystalline  ermanium onto (100) from a sphere with radius R ≈ 
4.2  μm.  This  was  certainly  a  good  sphere  at  least  up  to  4  μm  depth.  The  so-
called “pop-ins” of the FN vs h curve far away from the phase-transition position 
are not corrected for, because there is no force hold interruptions and there are 
no “discontinuities” in the FN vs h curve of [20]. Our trial Kaupp-plot in Fig. 11.2 
does  not  result  in  a  strai ht  line  as  it  should  if  the  “Hertzian  analysis”  of  [ 0] 
would  be  correct.  The  convex  curve  has  only  some  discontinues  that  must 
however not be interpreted as exothermic events. It proves the obvious failure of 
the false ISO and Johnson equation for spheres that must be strongly rebuffed. 
The  data  of  the  published  FN  vs  h  curve  are  fortunately  in  [20]  not  data-fitted. 
That is proved by our plot according to Eq. (11.19) for spherical indentations (Fig. 
11.3),  providing  two  linear  branches  from  the  actually  very  prominent 
endothermic phase transition. So, we can really tell and exclude or prove data 
fittings, which should be highly welcomed (see also Chapter 13). Apart from the 
following  energetic  calculations  below,  we  provide  the  easiest  way  for  the 
detection  of  phase  transitions  under  mechanical  load:    While    our  physically 
correct two-exponent parabola plot for spherical indentations in Fig. 11.3 gives 
after  the  initial  surface  effect  two  straight  lines  with  a  very  pronounced  kink, 
indicating the endothermic phase-transition, even though a phase transition was 
“excluded” by [20] with Raman spectroscopy. Only a “pinnin  of slip bands” and 
or  “multiple  discontinuities”  by  “plastic  deformation”  were  suspected  in  [20].  In 
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Fig.  11.3  we  plot  the  normal  force  FN  vs                    for  germanium, 
according  to  Equation  (11.19).  It  visualizes  the  linearity  for  obtaining  the 
penetration resistance values k (mN/µm

3/2
) at the kink-point with respect to the 

spherical tip with radius 4.2 µm. The phase-transition onset is clearly seen by the 
kink and the very different k-values of the polymorphs. The regression line results 
are inserted. The slightly steeper data above the horizontal shut-off line are not 
included in the regression. 
 
We do not dare to claim a “second kink” at about 46 mN load due to the short pen
etration length, but did not include the data pairs above 40 mN load, due to the  s
hort  penetration  length.  There  is  also  a  risk  of  spheres’  quality  at  hi her dept
hs. The 4.  μm diamond sphere was however in  ood shape, at least up to about 
0.4 μm depths. The inserted regression lines give the materials’ dependent penetr

ation  resistance  values  ks (mN/µm
3/2

) of the  respective  polymorphs, because 
the uninterruptedly varying geometric factor is taken care of by the R/h ratios 
 in Equation (11.19). The equalization of the (not drawn) regression lines provide  
the sharp phase transition onset at the kink position at 5.197{h3/2p(R/h-1/3)                                       
                                                      . 
  One  obtains  FNkink  =  10.703  mN  by  insertion  in  any  one  of  the  two 
regression line equations. With the FNkink value one obtains hkink= 0.1 4 μm from 
the  FN  vs  h  loading  curve  and  according  to  Equation  (11.9)  also  Wapplied1  = 
0.67704  mNμm.  The  inte rated  Equation  (11.21)  provides  Windent1  =  0.4756 
mNμm.  
 

 
 

Fig. 11.2. Normal force vs depth
3/2

 trial-plot of the spherical (R = 4.2 µm) 
indentation onto germanium, disproving the so-called “Hertzian theory”     

ofJohnson [6] that has been claiming a one-exponent h
3/2

 parabola as that 
would require to proceed linearly in that plot; the loading data were taken 

from [20] 
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Fig. 11.3. Normal force vs point by point corrected depth
3/2

 plot of 
germanium upon spherical indentation (R = 4.2 µm) onto germanium with 
the inserted regression line equations; the initial surface effect data and 

the data above the horizontal line are not part of the regressions; the 
phase-transition onset is at 10.703 mN; the loading data were taken from 

[20] 

 
The Windent/Wapplied ratio is here not 0.8 as in the case of conical, pyramidal, and 
wedged indentations (cf Section 3). It changes for every point at spherical 
indentations as in Fig. 11.3. We need the integrated Formula (11.21) for the 
transformed polymorph of germanium. It can be calculated for any force with its 
depth above the kink value for the calculation of Windent2 and Wapplied2. In the 
absence of a second kink within the loading range we integrated from FNkink to 
FNmax at linearly interpolated 50 mN and the interpolated depth of hmax = 0.4444 
µm. Equation (11.21) provides Windent2 = 7.07438 mNµm for the sphere with 
radius 4.2 µm. Equation (9) is correspondingly used for (50 − FNkink1) and (hmax − 
hkink) to give Wapplied2 = 8.8219 mNµm up to 50 mN load for the sphere of radius 
4.2 µm. The sum (Wapplied1 + Wapplied2) is 9.4989. As the full applied work 
(Equation (11.12)) from 0 to FNmax and hmax is 11.1111 mNµm one obtains the 

endothermic balance as full Wapplied – Wapplied = Wtransition = 1.6122 mNµm, 
according to Equation (11.13) for the phase transition energy of germanium at 
the kink onset position for the whole indentation force. 
 
It should be noted that the energy calculations for spheres are with respect to the 
R/h value at the kink position. The non-constancy of the correction factor in 
Equation (11.19) prevents a normalization of the energy values per mN. Every 
energy value must be separately calculated when compared with the values from 
conical, pyramidal, or wedged indenters. Only for the latter is it possible to 
interpolate and even interconvert energy values. This disadvantage of spherical 
indentations is outweighed by the pressure distribution over an almost plane 
area. The sphere calotte radius for R = 4.2 µm and h = 0.124 µm is easily 

calculated with              and          to give r = 1.01327 µm. Thus, 

the flat π r
2
 area is here 3.226 µm

2
, which is similar to the calotte-cap  πRh 

surface area of 3.272 µm
2
. For the pressure calculation we need the force part 

for the penetration of Equation (11.19v), in accordance with the energy law. At 
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the phase transition onset position, the Windent1/Wapplied1 ratio is 0.4756/0.67704 = 
0.70247. Therefore, also FNindent1/FNapplied1 = 0.70247. When this factor is 
multiplied with the whole force of 10.703 mN one obtains the force at the phase-
transformation onset that is only responsible for the penetration and calculates to 
7.5185 mN. The penetration force/area is thus 2.331 or 2.298 mN/µm

2
 (which is 

better known as GPa). We do not decide which of the two surfaces give the 
better value, but upon rounding both read 2.3 GPa. The almost perfect 
correspondence of this pressure value with much more difficultly obtained 
hydrostatic anvil pressurization results is discussed in Section 11.6. 
 

11.5 COMPARISON OF THE PYRAMIDAL AND SPHERICAL 
INDENTATIONS ONTO GERMANIUM 

 
It is certainly more precise to indent with diamond indenters like for example with 
Berkovich indenter, the smooth diamond faces of which are everywhere uniform. 
Its  inevitable  tip  rounding  ends  at  the  very  low                        and  it  is 

mostly hidden within the diverse surface effects that are abandoned. Conversely, 
ideal  spherical  diamond  tips  require  more  expertise  at  their  production  and 
control  of  a  constant  radius  for  a  certain  guarantied  height.  Such  radii  are  not 
very  precisely  known  and  hardly  reproducible.  The  next  difference  is  the 
penetration mathematics that is very easy for cones, pyramids, and wedges, but 
more complicated for spheres. These questions could be answered now with the 
Equation (11.18) and Equation (11.19). Different are the penetration depths with 
pyramids and spheres. The kink values of the phase-transitions for Berkovich are 
4.149 mN at 0.151 ∙ 0.8 µm (Equation (11.8v)) and for the sphere 10.703 mN at 
0.124 ∙ 0.70247 µm [Equation (11.18), we must here use the penetration force]. 
The  corresponding  Windent1  values  are  at  0.10736  mN  and  0.4756  µm  for 
Berkovich and sphere, respectively. Also, the comparison of the corresponding 
phase-transition energies of 0.2487 and 1.6217 mNµm shows that we cannot clai
m without  further  data  that  these  phase-transitions  did  produce  the  sa
me polymorph.  The  Berkovich  should  have  reached  a  much  deeper  penetra
tion depth than the sphere and the values of Windent and Wtransition better comparabl

e. It 
might be twinning of germanium as had been suggested in [19] for the Berkovich. 
Unfortunately,  we  could  not  analyze  the  smoothness-lacking  multi  load-unload 
curves of [19] up to 40 mN so that we probably missed the force for the more 
demanding phase-transition, as it was reached for the sphere. Furthermore, the 
lower force for twinning at low depths of the sphere, could have been lost due to 
zero-point  problems  at  the  start  and  extremely  large  R/h  values  of  Equation 
(11.19) at very low force. This is a disadvantage of spherical indentations. Low 
energy phase-transitions must be detected with pyramidal indentations. On the 
other hand, high energy phase-transitions are easier with ideal spheres at lower 
depths. We detected here two phase-transitions with different transition energies 
for germanium, the further characterization of these requires X-ray diffraction or 
more advanced spectroscopic techniques. 
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11.6 COMPARISON OF THE SPHERICAL INDENTATION WITH 
RESULTS FROM ANVIL PRESSURIZING OF GERMANIUM 

 
An important advantage of the sphere calotte geometry is its flat π r

2
 area value 

that is very similar to the one of the  πRh cap area at low depth (here 3.226 and 
3.272 µm

2
, respectively). One calculates reliable force over area pressure values 

(mN/µm
2
, better known as GPa). These do not contain the errors of extensive 

simulations for ISO hardness for indentations in [7] by assuming pristine 
standards by denying the phase-transitions that had occurred at their loads, not 
to speak of the numerous further technical errors as revealed and listed in [21]. 
The present spherical onset force at FNkink = 10.703 × 0.70247 mN gives 2.321 or 
2.298 mN/µm

2
 (GPa) transition pressure when divided by the penetration area at 

the phase-transition onset (Section 11.4). This pressure value is smaller than 
those of the most cited anvil experiments that require about 8 to 11 GPa, 
depending on the hydrostatic purity of the pressure transfer in [22]. That seems 
to exclude in the present spherical case a transformation of Ge-I (cubic, 
diamond, Fd3m) into non-quenchable Ge-II {(tetragonal, space group I41/amd, ß-

tin)}. But one has to consider that Ge-III (body centered tetragonal) is formed 
from Ge-II in the anvil case upon pressure release from 12 - 14 GPa down to 7.6 
GPa and lower, where it thermally reverts to Ge-I and Ge-III. Very important in 
this respect is the long-time (weeks) anvil-pressurizing of Ge-I at 2.5 GPa to 
obtain Ge-III at room temperature. This is known since 1965 [23] and has been 
confirmed in [24]. This value corresponds very well with the rapidly reached 
phase-transition pressure value of 2.3 GPa by spherical indentation. We 
conclude that there was enough pressure for the phase-transition under the 
sphere to yield the Ge-III polymorph. But we cannot exclude that this might have 
occurred via Ge-II that thermally diverted rapidly to Ge-I and Ge-III at the 
pressure of 2.3 GPa. Both anvil and spherical indentation techniques require X-
ray diffraction analyses. Indentation is much easier and probably more precise 
than anvil pressurizing. 
 

11.7 CONCLUSIONS 
 
This paper compares the mathematical descriptions of conical, pyramidal and 
wretched indentations with the spherical ones and it numerically exemplifies 
them with literature data from germanium. The geometrically based mathematical 
deductions result in arithmetic formulas and application equations. 
Unprecedented applications are developed. The physically correct formulas are 
up to replace the false formulas of ISO 14577 that rely on false premises that are 
still violating the energy law by using elastic theory and iterated projected 
(contact) area. We therefore urgently ask to abandon historical beliefs. ISO 
14577 still standardizes incorrect standards and procedures that do not match 
with reality. The reasons for the inconsistencies for more than a century are 
unrepeatable extremely complicated “mathematical deductions”. In addition to 
that ISO-ASTM use experimentally false standards not only due to not 
considering phase-transitions under load—that they cannot detect with their false 
formulas—, but also with poor force linearities and mix-ups of the standards. It is 
therefore clear that they could not create valid closed equations for indentations. 
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Rather the false belief required numerous iterations, approximations, data-
adjustments, and simulations. Any control of experimental data had been 
impeded and did not occur in the mainstream. It produced false thinking and 
encouraged various data manipulations. Some striking examples are challenged 
in [10] and [21]. These can only now be easily detected and often corrected by 
using our mathematically correct closed equations. We sincerely advocate to 
after all accepting the easiest application of geometry and arithmetic calculation 
rules for the correct analyses of indentation data. 
 
We complete and extend in this paper the geometric solutions for conical, 
pyramidal, wedged and spherical indentations by physically sound use of the 
indenter volume for the coupled pressure and penetration events and we deduce 
valid formulas and application equations. The calculation of the energies and 
transition energies of phase transitions upon indentation with the Berkovich 
indenter is calculated in the usual way as in [11,15,17,18,21] up to 16 mN load. It 
confirmes the loading curve FN = k h

3/2
 from [16]. 

 

The unfortunately still worldwide accepted ISO and Johnson equation for 

spherical indentations (”               “) has again been disproved with a 
trial Kaupp-plot FN vs h

3/2
 that is not linear. 

 

The spherical loading curve does not at all proceed as a one exponent parabola, 

because the volume of the sphere calotte              can be transformed 

into                by multiplication with 1 = h/h. In correspondence to the 
deduction of Equation (11.4) into Equation (11.8) [16] one obtains (11.19) as the 
plottable equation with a point by point variable dimensionless correction term. It 
provides the materials constants ks1 and ks2 (mN/µm

3/2
) and the onset values of 

the phase-transition at the intersection of the regression lines. For the energetic 

terms one transforms Equation (11.19) into Equation (11.20)             

             for the integrations by taking care of their ranges to obtain the 
indentation energies Windent1 at the intersection point and Windent2 at an arbitrary 
point. The chosen point must be the same for the full applied work (full Wapplied = 
0.5FN2h2). The unprecedented phase-transition energy Wtransition is then simply 
the balance of full Wapplied minus (Wapplied1 + Wapplied2). 
 

The unprecedented indentation energy and the phase-transition energy also for 
spherical indentations enabled the comparison of Berkovich indentations with 
spherical ones. This was only possible with the penetration and thus also with the 
corresponding Windent1 values. Only these are comparable and the spherical 
Wapplied/Windent ratios are depth dependent. 
 

The indentations onto germanium were exemplified and the outcome is different 
with Berkovich at 4.149 mN load and with 42 µm sphere radius at 10.703 mN 
load. These are different phase-transitions. The low energy transition (most likely 
twinning) must have been lost in the spherical case where one detects the Ge-I 
into Ge-III transition. 
 

Importantly, the spherical indentation reveals a reliable pressure calculation for 
the comparison with published hydrostatic anvil results, because the flat calotte 
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surface at the low penetration depths is only slightly smaller than the cap surface 
(here 1.4%). The average calculated force/µm

2
 value of the phase-transition 

pressure amounts to 2.3 mN/µm
2
 (GPa) in excellent correspondence with the 

published anvil value of 2.5 GPa. These results support the interpretation of the 
hydrostatic and long questioned anvil results. Such now possible comparisons 
are very rewarding. 
 

The presented geometric results are not only comprehensive for academia, but 
the search for phase-transition onset and energy under load is of immense 
importance for practical applications and safety, because polymorph interfaces 
are prominent sites of cracking and crashing as imaged in [17]. False historical 
science must urgently be abandoned for the sake of sound mathematics with 
undeniable calculation rules. This helps in minimizing the risk for catastrophic 
crashes. One must now apply the geometry-based indentation in addition to the 
macroscopic pulling and bending tests. Indentations on the geometric 
mathematical basis is the only way for detecting materials’ phase-transition 
onsets and energies and temperature-dependent including activation energies 
[25]. The phase-transition onsets for stressed materials must be well above the 
highest imaginable stresses when they are at work. The search for them is 
indispensable. This includes the physical indentation control after long stress 
exposure terms, because a good phase-transition onset can become worse, as 
material grain structures can change by various influences. There are certainly 
liability problems, but it’s up now for an urgent revision of the still obligatory ISO 
14577 standards that enforce false “State-of-the Art” techniques to certification 
agencies and from them to the producing industries. That is world-wide required 
for the sake of daily security, not only for the aviation. 
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Erratum to “Valid Geometric Solutions for 
Indentations with Algebraic Calculations” 
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ABSTRACT 
 
The original online version of this article (Gerd Kaupp 2020) Valid Geometric 
Solutions for Indentations with Algebraic Calculations, (Volume, 10, 322-336, 
https://doi.org/10.4236/apm.2020.105019) needs some amendments and 
clarification. 

 
12.1 THE DEDUCTION DETAILS FOR THE SPHERICAL 

INDENTATIONS EQUATION 
 
The incorrect proportionalities (16) and (17) in the published main-text are 
useless and we apologize for their being printed. They were not part of the 
deduction of the Equation (18v). The deduction of (18v) follows the one for the 
pyramidal or conical indentations (4) through (8). The only difference is a 
dimensionless correction factor            that must be applied to every data 

pair due to the calotte volume. The detailed deduction of (18v) = (6S), is therefore 
supplemented here. 
 
Upon normal force (FN) application the spherical indentation couples the volume 
formation (V) with pressure formation to the surrounding material + pressure loss 
by plasticizing (ptotal). One writes therefore Equation (1S) (with m + n = 1) 
 

      
          

                                                                                      (1S) 

 
There can be no doubt that the total pressure depends on the inserted calotte 

volume that is              . It is multiplied on the right-hand side with 1 = 
h/h to obtain (2S). We thus obtain (3S) and (4S) with n = 1/3. 
 

                                                                                           (2S) 
 

                                                                                                      (3S) 

 

        
                                                                                                (4S) 

 
(4S) wi h pseud  dep h “hp-total” is   s  f r  he v  ume f rm  i n. I  rem ins (5S) 
with m = 2/3 on FNv or the exponent 3/2 on hv. 
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       or       

   
                                                                           (5S) 

 
The proportionality (5S) must now result in an equation by multiplication with the 
dimensionless correction factor             and with a materials' factor 

kv (mN/µm
3/2

) to obtain Equation (6S) that is Equation (18) in the main paper. 
 

       
                                                                                  (6S) 

 
For plotting of (6S) for obtaining kv the            factor is separately 
multiplied with h

3/2
 for every data pair. 

 
An additive term Fa can be necessary for the axis cut correction if not zero due to 
initial surface effects of the material. 
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ABSTRACT 
 

The physically accurate mathematical formula and its integration, which take into 
consideration the radius over depth changes upon penetration, are used to 
assess spherical indentations that rely on the original date. For germanium, zinc-
oxide, and gallium-nitride, linear plots, phase-transition onsets, energy, and 
pressures are obtained algebraically. Low pressure phase transitions can either 
be resolved by hydrostatic anvil onset pressures or they cannot. By comparing 
the polymorph structures to known structures from pulsed laser deposition, 
molecular beam epitaxy, and twinning, makes it possible to attribute the 
polymorph structures. The easiest method for creating and characterising 
polymorphs that are now available in pure form under diamond calotte and in 
contact with their equivalent less dense polymorph is to use a spherical 
indentation. Loading curves from experimental data are needed to account for 
the novel outcomes and new opportunities, which open-up new horizons for the 
synthesis of new polymorphs, not available under anvil pressurization. These are 
now easily distinguished from data that are “fitted” to make them concur with 
widely used unphysical Johnson’s formula for spheres (“P = (4/3) h

3/2
R

1/2
E∗”) not 

taking care of the R/h variation. Its challenge is indispensable, because its use 
involves even published “fitting equations” for making the data concur. These 
misleading reports (which do not include any "experimental" data) offer risky 
incorrect moduli and ideas. For PDMS, GaAs, Al, Si, SiC, MgO, and Steel, the 
fitted spherical indentation reports with radii ranging from 4 to 250 m are 
identified. Characteristic elements are revealed by the thorough analysis.   
 

Keywords: Spherical indentations; correct formula; phase-transition onset 
pressure; false Johnson formula; detection of data fittings. 

 

13.1 INTRODUCTION 
 

H. Hertz did not specify the spherical indentations; instead, he simply reasoned 
that the pressure of a contacting sphere is proportional to the "impact" area/3, but 
not to the depth (h) of the indentation [1,2]. All researchers engaged attempted to 
use "elastic theory" with regard to the area after taking the penetration depth into 
account (but not to the volume). With hundreds of complex equations and a 
variety of the most advanced mathematical procedures, the unusable 
mathematical formalism became so complex that it appeared to be readable only 
to highly skilled mathematicians. Also, Sneddon reported in 1965 a still very 
complicated hardly usable multi-term and multi-exponent equation in [3] that was 
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forgotten, when Johnson in 1985 presented his simple (but false) “   

              ∗   ” formula for spherical indentations [4]. It offered a 
straightforward analysis, a shortcut to the smaller "Young's modulus," and an 
escape from extremely difficult math. This received widespread recognition and 
was later incorporated into the ISO 14577 standard. This formula was thus used 
by most authors for spherical indentations by citing [1,2,4] without checking 
content and validity. That is rather strange, because the experimental data of 
spherical indentations exclude the validity of this formula and every simple circle 
directly shows its incorrectness: it does not consider the enormous R/h changes 
during the penetration. For example, the R/h ratios in [5] vary from >1500 to 20 
(for hmax = 20 nm) or from >480 to 50 (for hmax = 3.6 µm (Chapter 9). Every 
researcher should have immediately seen that any R/h term is missing in 
Johnson’s formula and that a cone or a pyramid behaves different from a sphere. 
The second obvious error is claiming “Young’s modulus” that is a unidirectional 
property, totally different from an indentation modulus. A very complex “equation 
for fitting” of the depth values is published as equation (9) in [6]: 
 

   contact    
            adh                

             adh              
 

The δ in [6] is penetration depth; P is “load” (force). The “fit parameters” 
are a0 and Padh. This data-falsification is published in [6] together with a series of 

crazy modulus values, relying on them. Related other fitting equations might also 
be in use. Only few authors published true experimental data of spherical 
indentations. These publications will be analyzed and the wealth of their loading 
curves is used in Section 13.4 on the basis of the physically and mathematically 
correct Equation (1), as deduced in [5,7]. These honest papers concentrate on 
Bradby’s group of 2002 (e.g. [8]). Correct data for Ge, ZnO, and GaN will be 
analyzed and compared with hydrostatic anvil pressurizations. Several by fitting 
falsified spherical indentations from peer reviewed publications will be analyzed 
in Section 13.4 They are largely prevailing and all of them are worthless in all 
respects. But we present easy and strict methods to sort them out. Some 
updates in this area are accessible elsewhere and can attract the readers' 
attention [9-11]. But these authors use very complicated fittings, iterations, and 
simulations instead of starting with the long known undeniable course of 
spherical indentations (Formula (1) as cited from [5] and [7]. And they do not 
detect any phase-transformation. Furthermore, the use of unidirectional “Young’s 
modulus” for the simulation of the loading curve to result in the false Johnson 
equation is incorrect. The data fitting for concurring with it are severe falsification. 
The therefrom determined “Young’s moduli” are dangerously misleading. The 
enormous trouble when Young’s moduli are equalized with indentation moduli 
has been amply exemplified in [12]. The publication of moduli from “fitted” data 
[6] adds another aggravation to these problems. The unsound theories that 
emerged from falsified data are, of course, also completely worthless. The 
purpose of this work is to ask Authors, Peer Reviewers, and Editors to reject 
papers that use data that are falsified by data-fitting. Unfortunately, such 
publications are the basis of certificates for industries, from which these must not 
deviate. Therefore, numerous false materials’ properties create a daily risk for 
failure upon mechanical stress [5,13]. Our sorting out techniques below for recent 
false reports, are clearly developed in this paper. They shall help to repeat the 
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mechanical characterization with true experimental data, when these are 
unavailable from the recent authors for genuine publications. Falsified results 
must no longer be used. The below cited and further authors of falsified reports 
on spherical indentations obtain the possibility to revisit their published data and 
the connected non-physical theories. The publication of their experimental data 
for obtaining correct important materials’ properties will be highly welcomed. The 
false theories and the severe risks from incorrect mechanical properties of 
technical materials in daily life must be removed. 
 

13.2 METHODS 
 

The loading data of the materials are taken from the published curves that were 
enlarged to A4 size. The cone depths were checked with hcone = R (1 − sinβ) 
where β is the half angle of the cone and R the sphere radius. When pop-ins was 

present these were repaired [13]. 20 data points were used and pocket calculator 
with10 decimals. The results are suitably rounded in text and Table 1. The 
calculations according to the Equation (13.1), Equation (13.2), and Equation 
(13.3) or the arithmetic routines including the energy correction are 
comprehensibly published in [7]. The r-values for the immersed calotte area are 
easily available by the combined use of sinα = (R − h/R) and cosα = r/R. The 
analysis of the spherical loading data used Equation (13.1) [5,7]. The indentation 
work Windent results from the integrated Formula (2) [7]. The detection of data 
fittings was with plots of the published data according to the Equations (13.1) and 
(13.3) [14], even though (13.3) is only valid for pyramidal and conical 
indentations and would correspond to the false often cited Johnson’s equation 

that must be denoted here as an inequality   s        s
   

     ∗. 
 

  s   s  s
   

   s                                                                       (13.1) 
 

 indent       s   s
   

       s   s
   

   as s                          (13.2) 
 

  py   py py
   

  apy                                                                           (13.3) 
 

The indices in the Equations (13.1) (13.2) (13.3) are N for normal, s for spherical, 
a for axis cut when not zero, and py for pyramidal or conical. 
 

The area of the immersed calotte for the onset of the phase-transition pressure 
calculations is given by its flat surface (πr

2
) or by its cap surface (2πRh). The 

radius r is easily obtained by the combination of sinα = (R − h)/R and cosα 
= R/r when looking at the geometric situation for the penetration of the calotte 
from the sphere with radius R [5]. 
 

13.3 RESULTS AND DISCUSSION 
 

 13.3.1 Germanium Spherically Indented 
 

The spherical indentation analysis of germanium [7],[8] is reported here for 
comparison with the further examples in Table 1. Figure 1 provides the basic 
data from the FN vs πh

3/2
(R/h − 1/3) plot and by using Equations (13.1) and 

(13.2). It shows the penetration resistances k1 and k2 as the slopes for the two 

phases up to 50 mN load. 
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Table 13.1. Mechanic and energetic data of spherical indentations (R = 4.2 µm) onto Ge, ZnO, and GaN that are reasonable 
rounded 

 
Material FNkink (mN) hkink 

(µm) 
Windent 
(mNµm) 

Wapplied 
(mNµm) 

full Wappl Wtransition 
(mNµm) 

Areas: πr
2
/2πRh 

flat/cap 
transition-onset mN/µm

2
 (GPa) 

Ge
a)
 10.7029 0.1243 0.4756 6.80929 10.9251 4.1158

b)
 3.226/3.272 2.331/2.298 

ZnO 22.3800 0.22059 2.16661 7.54011 14.6431 7.1030
c)
 5.6684/5.8212 3.7325/3.6344 

ZnO 56.6290 0.51716 11,0579 15.8916 26.4440 10.552
d)
 12,807/13.648 4.0438/3.7948 

GaN 38.8406 0.1455 2.12467 12.3876 22.8151 10.428
e)
 3.7731/3.8397 10.294/10.116 

GaN 118.397 0.3854 24.7506 33.8652 59.7898 25.925
f)
 9.7038/10.171 12.201/11.641 

a)
Data taken from [7]; 

b)
up to 50 mN; 

c)
up to 56.6 mN; 

d)
up to 100 mN; 

e)
up to 117.5 mN; 

f)
up to 250 mN.
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The phase-transition onset of Fig. 13.1 is at 10.703 mN. The energetic data give 
the indentation work Windent = 0.4756 mNµm and the transition energy Wtransition = 
4.1157 mNµm, as calculated up to 50 mN load. The transformation pressure is 
also calculated to give the good correspondence of 2.3 GPa with the anvil 
pressurizing phase-transition at 2.5 GPa. A nevertheless published trial plot in [7] 
with FN vs h

3/2
 (not shown here) for excluding the sole h

3/2
, as prescribed by ISO 

standards and false Johnston’s formula, for spherical indentations gave a convex 
plot instead of linearity. Fig.13.1) repeats the correct plot according to (13.1) and 
reveals a prominent endothermic phase transition. A further endothermic phase-
transition is already indicated at the end of the second straight line, subject to 
investigation at higher loads. 

 

 
 

Fig. 13.1. Normal force vs πh
3/2

(R/h − 1/3) plot of a spherical indentation 
(R = 4.2 µm) onto germanium, showing the required linearity (regression 

lines not drawn) and the kink of the Ge-I to Ge-III transition; linear 
regression equations are inserted; image taken from [7] 

 

13.3.2 Zinc Oxide Spherically Indented 
 

The spherical indentation onto ZnO with wurtzite structure follows Equation 
(13.1) and it reveals two phase-transitions. The analysis had to be performed 
after repair [13] of the published pop-ins in [15]. The plotted data are in Fig. 13.2, 
where the included regression data are the basis for the calculations. 
 

The spherical indentation onto ZnO exhibits two phase-transitions, distinguishing 
3 polymorphs in the force range up to 100 mN load, as revealed with the plot by 
application of Equation (13.1) to the published original load-depth data. The 
inserted linear regression equations are the basis for the calculation of the 
energetic terms and the pressure data in Table 13.1. 
 

13.3.3 GaN Spherically Indented 
 

The spherical indentation onto a GaN epilayer (R = 4.2 µm) was reported in 2002 

[16] and the analysis (after pop-in repair [13]) with Equation (13.1) gives the 

https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref7
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref10
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref12
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f2
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#t1
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref13
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref10


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Study on Real and Fitted Spherical Indentations 

 
 

 

 
189 

 

linear plot with two phase-transitions (three linear branches) as shown in Fig. 
13.3. These published FN vs h curves represent original, not data-fitted, data.The 
inserted regression formulas allow for the calculation of the onset forces, the 
energetic terms, and onset pressures in Table 13.1. 
 
The more recent spherical indentation onto a single crystal of GaN [17] cannot be 
compared. Unfortunately, the analysis of these data with Equations (13.1) and FN 

 h
3/2 

for cones and pyramids using the techniques for the various further 

materials in Section 13.4 shows that these published depth data are fitted 
according to the ISO14577 standard to concur with the disproved Johnson’s 
formula. These data and conclusions are totally at variance. It would be nice to 
see the original untreated data. Unfortunately, numerous more recently published 
spherical loading curves are data-fitted and follow the unphysical formula of ISO 
and Johnson. It is therefore very important to check the validity with our plots for 
not being mislead. I can only discuss some of these here. It could be that the 
published data-fitting formula or related ones are inserted into more recent 
instrumented indenter’s software, so that data-fitted FN - h curves directly ensue 
(see also Chapter 11). The here deduced formulas should be used by the users 
to check for it and try to obtain and publish unfitted original data. 
 

 
 

Fig. 13.2. Normal force vs πh
3/2

(R/h − 1/3) plot of a spherical indentation 
(R = 4.2 µm) onto ZnO; data taken from Fig. 1 in [15] after repair of the pop-
ins [13]; linear regression equations are inserted; kink positions in Table 

13.1 
 

13.3.4 Comparison of the Results from Ge, ZnO, and GaN 
 
The results with Ge, ZnO, and GaN are compared in Table 13.1. 
 
These materials cover maximal loads that are 50 mN for Ge, 100 mN for ZnO, 
and 250 mN for GaN. More phase-transition onsets are to be expected at higher 

https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f3
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f3
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#t1
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref14
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref12
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref10
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#t1


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Study on Real and Fitted Spherical Indentations 

 
 

 

 
190 

 

loads. The force for the first phase-transition onset describes the sensitivity of the 
materials for their stability with respect to mechanical interactions. It is equally 
reflected by the sequence of the penetration resistance values k1 (physical 
hardness) in Figs. 13.1-13.3. The penetration depth values are not in the same 
sequence and neither so the first indentation work that are required for reaching 
the transition onset. But the transition work values are for the first and second 
transition of ZnO and GaN in the same sequence as the FNkink values. The data 
reflect the situation of spherical indentations with the same radius covering one 
or two phase-transitions per sample. The depths are always very low. The results 
are calculated from 0 to kink, from kink to kink, and from kink to the maximal 
force. The transition-energy and the onset pressure values can also be 
calculated for every force of interest, but they cannot be normalized per force as 
in the pyramidal case. The energy law requires multiplication of the phase-
transition FNkink values with Windent/Wapplied = FNindent/FNapplied [7,18] when only the 
penetration is addressed, for obeying the energy law. The advantage of 
experimental spherical indentations is the reliable pressure calculations at the 
transition onsets. The close similarity of flat surface and cap surface for the low 
depths is very favorable. It allows the comparison with hydrostatic pressurizing 
and new insights are therewith achieved. 

 

 
 

Fig. 13.3. Normal force vs πh
3/2

(R/h − 1/3) plot of a spherical indentation 
(R = 4.2 µm) onto GaN; data taken from Fig. 1 in [16], showing the required 
linearity and the kinks for two phase-transitions, ready for the calculation 

of the results in Table 13.1; kink positions in Table 13.1 
 

13.3.5 Comparison of the Spherical Indentation with Hydrostatic 
Pressurizing Data and with Synthesized Polymorphs 

 

The pressure data of germanium has already been compared with anvil pressure 
as combined with X-ray diffraction date. The low anvil pressure of 2.5 GPa 
required enormous effort for being detected and was long disregarded, as 
outlined and discussed in [7]. It corresponds with the onset pressure of 2.3 GPa 
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in Table 13.1. The present analysis of the spherical indentation is by far easier 
than anvil experiments but we profit from the X-ray proof for the low-pressure GeI 
to GeIII phase-transition in a highly rewarding manner. The pressure values for 
ZnO in Table 13.1 up to 100 mN load are not large enough for the B4 to B1 
(NaCl-type) transition, because the hydrostatic pressure for that phase-transition 
are reported to start at 9 GPa [19] or 9.8 GPa [20]. There are numerous reports 
on theoretically calculated caged ZnO polymorphs [21] that are not better space-
filling than the wurtzite structure (B4) of these materials and need not to be 
considered here. The theoretical calculations of 7 bulk polymorph structures of 
ZnO with respect to expected optical properties is also not helpful, because these 
lack density predictions [22] and none of these possible structures have been 
found by anvil pressurizations. The difficulties with resolving low pressure 
transitions under anvil are already discussed above with germanium. There 
remain the zinc-blende (=sphalerite) B3 phase and formations of twinned 
polymorphs. The more highly pressurized of these (onset at 4 GPa) is most likely 
the (B3) phase of ZnO that could already be epitactically grown on (001) of GaAs 
on a ZnS substrate at 500˚C. The growth of the film was by metalorganic 
molecular-beam epitaxy with diethylzinc + O2, “using electron cyclotron 
resonance plasma source to excite high density oxygen plasma with low-ion 
energy of 10 - 20 eV”. The lattice constant of 4.463 ± 0.015 Å was obtained from 
the RHEED (high-energy electron diffraction) pattern [23,24]. The fact that the 
growing of the film succeeded indicate that the pressure for its formation must be 
rather low. We can thus confidently claim having detected the first synthesis 
technique for the bulk ZnO B3 polymorph under the diamond calotte cap for 
further investigation. It is provisionally attributed to the 4 GPa onset pressure. 
The spacious wurtzite tetrapod with its complicated twinned shape including legs, 
as obtainable from thermal “vapor deposition on a polymer decorated silicon 
substrate” [25], must be excluded. The high tendency of ZnO to form twin 
structures is known [26]. A ZnO twin had already been synthesized by pulsed 
laser deposition [26]. It can also be obtained by electro-deposition on indium 
doped tin oxide (ITO) [27]. Again, spherical indentation appears to be the easiest 
synthesis of this species. These attributions must be confirmed by on-site X-ray 
diffraction at a synchrotron, or spectroscopically. This will include their further 
characterization. The spherical indentation results of ZnO reveal that the 
hydrostatic anvil pressurizing experiments did not resolve these lower pressure 
phase-transitions. The almost uniform pressure distribution in the low depth 
spherical indentations is particularly suitable for the suggested investigations. 
 

The GaN B4 phase (wurtzite) transforms upon hydrostatic pressurizing at 47 
GPa into the GaN B1 phase (rock-salt) [28]. Another report found this transition 
pressure at 37 GPa [29]. These publications do not report on transitions at lower 
pressures that are again not remarked under anvil pressurizing. Thus, the B4 to 
B3 (zinc-blende = sphalerite) transition pressure was not known. The ab-initio 
calculations of [30] predict a pressure of 11.45 GPa for the B4 into B3 transition. 
This value is close to our 12 GPa value in Table 13.1 and we assign accordingly. 
Very interesting is our 10 GPa value in Table 13.1. When compared to ZnO this 
phase-transition occurs at 0.65 times the depth at 1.75 times the force and at 
2.75 times the pressure. This may at first glance indicate twinning of GaN, but 
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why should that require so much force and pressure? Another attribution comes 
to mind: it could be the formation of the rhombohedral phase (R3m) of GaN that 
has recently be found in the B3 (zinc-blende, F-43m) phase of GaN epilayers, as 
grown on sapphire by molecular beam epitaxy [31]. This would prevent the 
twinning by pressurizing upon spherical indentation. Unfortunately, no energetics 
is available for the rhombohedral phase. The rhombohedral GaN (R3m) forms 
also via migration enhanced encapsulation growth by encapsulation between 
silicon and graphene [32]. It is thus easily formed. This would also support our 
attribution of the first phase-transition onset pressure of GaN to the 
rhombohedral polymorph with space group R3m. Clearly, experimental spherical 
indentation extends the knowledge from hydrostatic anvil pressurizing. Both 
assignments should be checked by Synchrotron X-ray diffraction together with 
the now far easier further analyses under the diamond calotte of these elusive 
and now easily available polymorphs. 
 

13.4 CHALLENGE OF SIMULATIONS AND DATA-FITTING FOR 
SPHERICAL INDENTATIONS 

 
It appears that after publication of the false Johnson’s formula requiring an 

                ∗  relation, the ISO standard 14,577, several textbooks, and 
publications believed in it (Section 1). A first glance on that Formula (from the 
beginning in 1985) should have evidenced that it does not take into account the 
self-evident change of the R/h ratio during penetration. As the experimental data 
did not concur with the assumed FN − h

3/2
 relation for spheres, Authors did not 

hesitate to simulate spherical loading curves by using Young’s modulus and 
Poisson’s ratio of the material with e.g. the JKR procedures [33] to produce such 
relation. Thereafter, the experimental depths have been fitted to concur with it by 
using published “fitting formulas” (e.g. Equation (9) in [6] with “fitting parameters”, 
as is written out in Section 13.1). That is in fact severe data-treatment. Related 
other fit-equations might also be in use. But most of the involved scientists 
stopped with publishing their experimental spherical indentation depths in favor 
of publishing “fitted depths”. 
 
They so avoided the inefficient formula for spheres from [3] and credulously 
thought to have a simple means for direct determination of the reduced elastic 
modulus. When doing so they agreed with data manipulation, not recognizing 
that it was against scientific ethics or practical value. However, anonymous 
Referees and Editors of books and papers did not stop such data treatments. 
There were though the important correct publications with Germanium, ZnO, and 
GaN from 2002 that are cited and successfully analyzed in Section 3. These 
pioneering papers contain experimental spherical load-depth curves that were 
apparently neglected, but they rightfully did not agree with Johnson’s formula. 
So, we urge on their revival here. 
 
The “fitting” of depth data is the creation of fake data for making them obey the 
falsely prescribed FN vs h

3/2
 relation for spherical indentations. That relation is 

however only valid for cones and pyramids [5,14]. It is more than misleading to 
unpardonably call the depth values in [6] “experimental data” instead of fitted 

https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref28
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref29
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref30
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref3
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref11
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref6


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Study on Real and Fitted Spherical Indentations 

 
 

 

 
193 

 

ones, as in their Figure 4 for a spherical (R = 200 or 192 µm) indentation onto 

PDMS. The exponent analysis according to FN  h
3/2 

gave a perfect straight line 

with a correlation R
2
 = 0.9999 (no phase-transition seen!) [34]. This was already 

complained against in [5] (with apology for not expressively having criticized the 

false FN  h3/2
 relation for spherical indentations in [34]). When the correct FN vs 

πh
3/2

(R/h − 1/3) plot according to Equation (13.1) is applied to fitted spherical 

indentations onto materials, one obtains concave curves. That is imaged below 
for GaAs, Al, and Si. It is also typical for all the further analyzed materials in this 
Section 13.4 (including the fitted curve for GaN from [17] in Section 3.3). These 
plots are the most compelling proof of data-fittings. When data were fitted to 
concur with Johnson’s formula they must, of course, provide straight lines when 
plotted according to Equation (13.3). Such trial plots indicate less sharply that the 
fitting had not completely wiped out any phase-transition unsteadiness. But one 
must not use such plots of manipulated data for phase-transition characterizing. 
It would be completely misleading to do so: we show with all of the analyzed 
examples in this Section 13.4 that one would always falsely claim exothermic 
behaviors while the phase-transitions are in in their correct physical indentation 
data endothermic. 
 

It appears that most recently published spherical indentations were “fitted” to 
obey the incorrect Johnson’s formula with its false promise to obtain “Young’s 
moduli” values that are however also incorrect fake values, not to speak of the 
fact that Young’s moduli are unidirectional moduli. Fortunately, we can easily 
distinguish valid from fitted invalid spherical indentation reports by simply 
checking their loading curves with plots according to the Equations (13.1) and FN 

 h
3/2

. 
 

 
 

Fig. 13.4. Plot according to Equation (13.1) for spherical indentations of the 
published clearly fitted data as taken from [35] for a spherical indentation 

with R = 10 µm onto GaAs, proving the data fitting for concurrence with the 
disproved Johnson’s equation, as no straight line ensued 
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We do not further deal here with the details of the JKR simulations [33] and the 
data-fitting techniques concerning the spherical indentations, because that is 
unscientifically false. Such data treating is dangerous and against scientific 
ethics. The falsified outcome will now be further exemplified with some 
unbelievably manipulated published loading curves of varied types. It is hoped 
that this somehow difficult task will help to positively develop this important field 
of materials’ analyses. 
 

13.4.1 Gallium Arsenide “Spherically” and Pyramidally Indented 
 
The spherical indentation (R = 10 µm) of GaAs in [35] does not follow the 
equation for spherical indentations (13.1) and the Authors cited paper [4]. The 
analysis of the published loading curve—after repair of the “pop-in” in 
their Fig.1(a)—with Equation (13.1) for spheres does not give a straight line, but 
the concave curve of Fig. 13.4. This indicates the belief of the authors in 
Johnson’s formula from 1985 and the application of a fitting procedure to the 
original loading data to concur with such formula. 
 

Conversely, the application of FN  h
3/2 

for cones and pyramids as falsely claimed 

by Johnson to the data of [35] leads, after a short initial effect, to two straight 
lines, the first steeper as the second by forming a kink. This is shown in Fig. 13.5. 
The disproved Johnson’s formula requires, of course, linearity with the exponent 
3/2 on h for fitted spherical indentations. However, the so received putative 
exothermic event does not represent the endothermic phase-transitions of GaAs, 
and also the slopes are simulation and fitting-iteration artefacts without any 
value. There is thus a risk of pitfalls with linear plots using Equation (13.3) from 
loading curves published in the literature, because some of the phase-transition 
unsteadiness is not fully extinguished by the data-fitting of spherical indentations. 
It must therefore be clear that the authors' indenter specification was correct, 
when the phase-transition analysis comes out exothermic as in Figure 13.5. We 
must therefore note here, that our so revealed “exothermic phase-transitions” are 
from a faked data-fitted curve of [35]. The wealth of our double check deserves 
full appreciation, rather than criticism. 
 
This data check proved the already complained data fitting. It appeared therefore 
necessary to compare the values in the caption of Fig. 13.5 with the ones from 
the correct analysis of Berkovich indention loading curves onto GaAs. These are 
taken from Fig. 1 in [36] at low penetration (up to 4.5 mN) and from Fig. 3(a) of 
[37] at high penetration (up to 600 mN). These genuine experimental curves 
were analyzed to yield kink points for endothermic phase-transitions at 2.517mN 
for loads up to 5 mN and 218 mN for loads up to 600 mN. The first of these with 
onset at 2.517 mN is not resolved at this loading range. The second of these 
loads in Fig. 13.6 starts pretty close to the one in Fig. 13.5, but the calculated 
mechanical data are principally different. The second branch is steeper than the 
first one, indicating the endothermic phase-transition with the onset (kink 
position) at 218 mN load and 1.40 µm depth. The normalized Berkovich 
indentation transition-energy with onset at 218 mN is endothermic at +0.161 

mNµm/mN [this work], as deduced with FN  h
3/2 

for cones and pyramids and its 

https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref30
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref32
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f4
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref32
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f5
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f5
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref33
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f3
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#ref34
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f6
https://www.scirp.org/journal/paperinformation.aspx?paperid=103343#f5


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Study on Real and Fitted Spherical Indentations 

 
 

 

 
195 

 

integration in [7,14]. Thus, the spherical indentation with R = 10 µm onto GaAs is 
a misleading fitting artifact showing again the data treatment in [35]. The 
importance of the argument deserves the printing of the Berkovich indentation 
analysis of the experimental result from [37] in Fig. 13.6. 
 

 
 

Fig. 13.5. Trial plot (FN  h
3/2

)
 
with the data as in Fig. 13.4 from the spherical 

indentation (R = 10 µm) onto GaAs (100) with the clearly fitted data as taken 
from [35], showing after an initial effect two straight lines with trial 

regression lines of FN1 = 433.6h
3/2

 + 6.6 and FN2 = 325h
3/2

 + 57.9 mN that 
would falsely simulate an exothermic transition event with an onset at 213 
mN and a here provisionally calculated impossible transition energy per 

mN of −0.101 mNµm/mN. This exothermicity is dangerously in error and the 
slopes in Fig. 13.5 have no physical meaning 

 

Fig. 13.6 where FN  h
3/2 

is correct for the pyramidal indentations and the Kaupp-

plot [14] proves undoubtedly that the phase-transitions of GaAs under load are 
endothermic. 
 
As we present strong arguments, we must check whether further fitted spherical 
indentation exhibit the corresponding behavior. 

 

13.4.2 Aluminum “Spherically” Indented 
 

The analysis of the spherical indentation onto aluminum [38] reveals a similar 
outcome as with GaAs. The sphero-conical indenters are precisely described 
with a cone half angle of 45˚ and nominal radii of 10 µm and 5 µm. Scanning 
electron microscopic images indicated “well formed” radii of 8.5 and 5 µm down 
to depths of 2.5 and 1.5 µm, respectively. The nominal radius of 10 µm 
corresponds to hcone = 2.93 µm. This is considerably larger than the maximal 
depth of <1 µm) for the indentation data of pure Al. Again, the analysis with 
Equation (1) for spheres does not give a straight line but the concave curve 
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of Fig. 13.7, which clearly indicates a data fitting for concurring with Johnson’s 
formula and unfortunately ISO standard. 

 

 
 

Fig. 13.6. Analysis with the Kaupp-plot (FN  h
3/2

)
 
 of the Berkovich 

indentation onto GaAs (data taken from Fig. 3(a) in [37]) showing after an 
initial unresolved part two linear branches with the inserted regression 

equations that both correlate with R
2
 = 0.9999; the slopes of the pyramidal 

indentation in Fig. 13.6 are the penetration resistance values of the two 
polymorphs 

 

The trial plot with FN  h
3/2

 to the spherical indentation in Fig. 13.8, using the 

same fitted data as for Fig. 13.7 is linear with after the extended initial effect two 
straight lines. These simulate an exothermic event, because the second branch 
has the lower slope. This is the false and dangerous result of the fitting error as 
above with GaAs (Fig. 13.5): the phase transition of aluminum under load is 
endothermic, as was already shown with Berkovich indentations onto aluminum 
in [34].  
 

Again, the calculations of elastic moduli according to false Johnson’s formula and 
its discussion are useless and misleading. The data fitting is again safely 
confirmed with Fig. 13.7 and Fig. 13.8. The previous branch is again steeper than 
the following one, simulating a false exothermic event. The known phase-
transition of aluminium upon Berkovich indention has the endothermic phase-
transition onset at close to 40 mN load (two different sources) [34]. The similarity 
with the above GaAs case repeats the falsifications by the fittings. Again, the 
falsified data for an h

3/2
 loading parabola retain only the information that there 

must be a phase-transition at a similar force, as characterized with a Berkovich 
indentation. 
 

Data fitting destroys the value of spherical indentation and excludes any use of 
them. “Fitted” data points must not be told or suggested as being “experimental” 
ones. 
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Fig. 13.7. Analysis of the published fitted data from the spherical 
indentation with a nominal radius of 10 µm onto pure aluminum according 
to Equation (1); data are taken from the upper data points of the multiple 
partial loading Fig. 13.12(b) in [38]; the concave bending does not agree 

with Equation (1) and proves the data-manipulation 
 

 
 

Fig. 13.8. Trial Kaupp-plot according to FN  h
3/2 

for the spherical 
indentation onto aluminium substantiating the undue “fitting” of the 

original experimental data; this plot appears as if it were the result of a 
conical or pyramidal indentation instead of a spherical one with R = 10 µm;  
after the initial effect (oxide and polishing) two extended straight branches 
with unsteadiness at about 33 mN loads that would simulate an exothermic 

event, but not the endothermic phase-transitions of aluminium; the 
“averaged” data crosses are taken from Fig. 13.12(b) in [38]; the slopes 

in Fig. 13.8 have no physical meaning 
 

13.4.3 Silicon “Spherically” Indented 
 

Spherical indentations (R = 8.5 µm) of silicon were published in [39]. Photos of a 
sphere and a description of their indenter setup as “All of the force-
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displacement measurements were made on a UMIS-2000 instrument”, and also 
the copious description how “The indentations were carried out” are indicating 
that they might have been without data-fitting. Only the cone angle of the 
conoidal indenter was not disclosed. However, the authors relied in their text on 
the incorrect Johnson’s formula with the impossible FN vs h

3/2
 relation for 

spherical indentations. This must again be severely challenged. Our analysis of 
the published “experimental” data pair crosses from their Fig. 4(a) (similarly in the 
further images) give again no straight line when the Equation (13.1) for spheres 
is applied to the published data. The concave curve in Fig. 13.9 is obtained 
instead. 
 

The data-fitting is again additionally secured with the trial Kaupp-plot (FN vs h
3/2

) 
in Fig. 13.10, using the so called “observed” but in reality, fitted loading curve 
data pairs (the data crosses next to the simulated curve in [39]). This second 
proof is evident by the linearity with exothermic unsteadiness at about 30 mN and 
very pronouncedly at 80 mN load. 
 

As shown with GaAs and aluminium, the residual information of “exothermic 
unsteadiness” tells only that phase-transitions will be found by Berkovich 
indentation. The steepness of the preceding lines in Fig. 13.10 is again higher 
than that of the following ones. This seems to be indeed typical for the undue 
fitting procedure. The genuine silicon phase-transitions are all endothermic: the 
Berkovich indentation onsets of Si (100) at 4, 15 and 25 (data taken from [40] ) or 
29 and 81 mN (data taken from [41]) were analyzed in [42]). They reveal 
endothermic phase-transitions. 
 

Unfortunately, the more recent spherical indentation onto silicon with R = 5 µm of 
[43] also used Johnson’s formula and the Authors do not disclose their cone 
angle. We therefore do not discuss it here. 

 

 
 

Fig. 13.9. Plot of the spherical indentation (R = 8.5 µm) onto silicon (100) 
according to Equation (1); the concave form instead of the required 

linearity proves the data-manipulation in Fig. 4(a) of [39], from where these 
were taken 
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Fig. 13.10. Trial plot of the spherical indentation (R = 8.5 µm) onto silicon 

(100) according to FN  h
3/2

, showing linearity with kinks at about 30 and 80 
mN loads that mimic exothermic event, whereas the phase-transitions at 

such forces must be endothermic; the lower force onset of silicon requires 
a ruler; the artificial slopes in Fig. 13.10 have no physical meaning, due to 

obvious data-fitting from a sphere with a radius of 8.5 µm to follow 
Johnson’s formula 

 

13.4.4 Silicon Carbide “Spherically” Indented 
 
Datye et al. in [44] published spherical indentation data of silicon carbide (SiC). 
They used their SiC-  brand “that is similar to (0001) of the single crystal”. With 
their sphere radii of 25 µm and 7.5 µm they reached fully elastic or elastic and 
plastic indentations, respectively. The data were “fitted” to “Hertz spherical 
contact solution”, which means: the disproved Johnson’s equation was again the 

fitting target. These published load-depth curves with fitted depths do again not 
follow the Equation (1) for spherical indentations. They give the concave curve 
when tested with Equation (1) and they analyze linear with the trial Kaupp-plot 

(that is only valid for pyramids and cones) according to FN  h
3/2 

without 

unsteadiness up to 475 mN load. After short initial effect, the simulated slopes of 
1030 (R = 7.5 µm) mN/µm

3/2
 or 3742 (R = 25 µm) mN/µm

3/2
 are obtained with 

correlation coefficients of 0.9997 or 0.9999, respectively. These do however not 
describe any materials’ property, but only reflect the fitting efficiency. We 
nevertheless determined these slopes despite the data-fitting, for provisionally 
checking the influence of the tip radius influence. Interestingly, despite the fitting 
treatment of the depths, the ratio of these slopes (3.7) is similar to the ratio of the 
radii (3.3). It should be further studied whether such a relation holds also for 
spherical indentations with untreated experimental depth data. The mayor errors 
of the simulating procedure appear to be the modulus E* as calculated with the 

false Johnson formula of ISO 14577. 
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The phase-transition pressures of SiC have been calculated to 102 and105 GPa 
(hexagonal 6H to 1B) or (cubic 3C to 1B = sodium chloride) phase, respectively, 
and the experimental shock data have them at about 100 GPa [45]. This is far 
from being reached with the maximal force of 500 mN in [44]. 
 
There seems to be the same data fitting techniques in all of the here analyzed 
cases, but we still need further analyses with a crystalline oxide. 
 

13.4.5 Magnesium Oxide “Spherically” Indented 
 
The authors of [46] used a polished and rinsed (001) surface of MgO for a 
“spherical indenter in diamond” with an iterated radius of 9.5 µm. Their published 

Fig. 1(c) in [46] is completely reversible up to 300 mN load and 0.4 µm depths. 
The data fitting is clearly revealed by their reference to [4] and again by the 
concave plot that results by application of Equation (1) to the published force-
depth curve (not shown here). We need thus not deal any further with this report. 

 
13.4.6 Steel “Spherically” Indented 
 
For rounding up our knowledge of the falsifying effects of data-fitting spherical 
indentations we also need the analysis of a technical multi-component material. 
A spherical indentation onto a standard microhardness steel block (500 HV30; 
H/E = 0.04), using a sphero-conical tip with radius of 7.2 µm [47] and cone half 
angle of 45˚ [38] (we calculate hcone = 2.11 µm) (formula in Section 13.2) 
appeared appropriate. Actually, the nominal radius of 5 µm ± 6.6 nm (we 
calculate hcone = 1.46 µm) was increased by a “well-fitting simulation” to 7.2 µm. 
And the “nominal values of 210 GPa and 0.3 were assumed for Young’s modulus 
and Poisson’s ratio in all simulations”. The load-depth data were taken from Fig. 
5(a) in [47]. The application of Equation (1) for spherical indentation is valid for 
every tip radius as long as the hcone value is not surpassed. But the depth values 
for a certain force are strongly dependent on the tip radius (cf. Section 13.4.4.). 
Again, concave curves (not shown here) but not straight lines are obtained both 
for nominal 5 µm or iterated 7.2 µm radius. These analyses tell that our already 
multiply complained data-fitting was again performed in [47]. Fig. 13.11 ensued, 

when the Kaupp plot according to FN  h
3/2

 was applied to the clearly fitted 

loading data. It exhibits three linear branches that simulate two unsteadiness 
points both with misleading exothermic behavior. Neither the slopes nor the 
exothermicities are usable. The known phase-transitions of steels and iron are 
endothermic. A numerical comparison with their onset forces would require a 
Berkovich indentation of this particular multi-component steel. It should be 
stressed that the radius R must be measured but never be simulated. It plays an 
important role for the outcome of experimental spherical indentations. 
 
The unsteadiness onsets in Fig. 13.11 cannot be termed phase-transition values, 
as they would falsely claim “exothermic” behavior and the slopes are worthless. 
They are equally false as in the cases for GaAs, Al, and Si. Despite the obvious 
errors of data-fitting for obeying ISO 14577 standards, the authors of [47] relied 
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on the false Johnson formula for “Young’s modulus” determinations from a 
simulated loading curve. These are nothing else than faked results. 
 
Very strange is the publication of Fig. 3 in [47]. The tip radius had been shifted 
from 50 µm ± 1.4 nm to 115 µm, because the data could “only be well fitted” to 
the simulated Johnson loading curve with R = 115 µm. Such behavior is absurd. 
The Authors of [47] did not at all recognize that the course of a spherical 
indentation strongly depends on the radius R. They tried to justify their shifting 
with the inconceivable claim that “a slight flattening of the spherical shape over 
the 4.5 µm radius contact region, arising from as little as 0.11 µm at the center, is 
sufficient to produce an increase in spherical radius of this amount” (from R = 50 
µm ± 1.4 nm into R = 115 µm!). Tip radii are mechanical values that cannot be 

shifted by iterations “as necessary”. While all of that already proves the multiple 
data treatment, we nevertheless checked the fitted data with our reliable test 
methods. The application of Equation (1) give the differently sized concave 
curves (not imaged here) for the data pairs with R = 115 µm and for the 
simulated curve with nominal R = 50 µm ± 1.4 nm. This confirms the data fitting, 
as in all of the other tested cases in Section 4. 

 

 
 

Fig. 13.11. Trial plot according to FN  h
3/2

 for the spherical indentation 
(iterated R = 7.2 µm) onto the steel with H/E = 0.04, as taken from Fig. 5(a) in 
[47] by using their fitted data point crosses; the force vs depth

3/2
 plot—only 

valid for conical or pyramidal indentations—shows three linear branches 
simulating two exothermic events due to the data-manipulations, while 

phase-transitions of steels are endothermic; the slopes in Fig. 13.11 have 
no physical meaning 

 
Furthermore, both simulated curves for the spherical indentation “of a steel 
standard hardness block (900 HV30 nominal” with H/E = 0.4 in Fig. 3 of [47]) give 

linearity when trial plotted according to FN  h
3/2

. The simulated R = 50 µm radius 

curve gives an exothermic unsteadiness at about 100 mN and 0.150 µm (not 
imaged here) with our calculated pressure of p = 2.11 GPa. Conversely, the 
simulated R = 115 µm curve in [47] gives the single straight line in Fig. 13.12 
again with the maximal force at 200 mN from the first to the last data point 
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without any unsteadiness. This only tells the high fitting precision that is obtained 
with the published equations in e.g. [6] (as written down in Section 1). Our 
calculated pressure in Fig. 13.12 at its end with 200 mN load gives p = 1.58 GPa. 
This clearly misses the unsteadiness at p = 2.11 GPa with R = 50 µm, as such a 
high pressure is not reached with a more than twice as high radius R. It stresses 
however the enormous influence of the tip radius. In the present case one must 
be alerted of not mixing up the fitted spherical indentation (that is totally 
worthless) with a pyramidal or conical indentation that would give a totally 
different slope (yet unknown for steel 900 H/E 0.4). It appears rather strange that 
the paper [47] could pass the Reviewers and Editors for its publication in the 
Journal of Materials Research. Fortunately, our mathematically sound analyses 
are now able to detect the invalid simulations, fittings, and iterations, by using 
Equation (1).  

 

 
 

Fig. 13.12. Trial Kaupp-plot according to FN  h
3/2 

for the spherical 
indentation (iterated R = 115 µm) onto a steel standard hardness block (900 

HV30 H/E = 0.4); the clearly fitted “data” are taken from Fig. 3 in [47]; it 
shows a perfect straight line without unsteadiness, as the data-fitted 
spherical indentations falsely require an FN vs h

3/2
 relation; the onset 

pressure of the unsteadiness is not reached; the slope in Fig. 13.12 has no 
physical meaning 

 
The plot in Fig. 13.12 again underlines the unique power and necessity of 
checking publication data from spherical indentations with the correctly deduced 
Formula (1) in [5] and [7]. It reveals: both of the manipulated data in Fig. 13.3 of 
[47] (R = 115 µm or of nominal 50 µm) are totally worthless due to various 
simulations, iterations, and data-fittings for concurring with the disproved 
Johnson equation that does not take care of the depth-dependent R/h ratio 
during the penetration. Even worse, the influence of the tip radius to the applied 
pressure was not acknowledged when nominal tip radii were changed by 
iterations (5 into 7.2 or 50 into 115 µm). 
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A recent report deals with the spherical indentation of several steels with a ball of 
radius 250 µm, in e.g. Fig. 10 of [48]. The Authors used the techniques of [38] 
and published several “experimental” indentation curves. We analyzed the one 
for DC01 steel. The test with Formula (1) for spheres gives the concave curve 
(not imaged here) corresponding to the ones that we always obtained when the 
spherical indentation data were fitted. This paper [48] covers high loads up to 

almost 200 N. The trial test with FN  h
3/2

 for conical or pyramidal indentations 

gives three linear branches at very high load with two unsteadiness points, 
simulating again worthless exothermic behavior. This FN vs h

3/2
 plot in Fig. 13.13 

proves that the simulation, iteration, and fitting techniques from 1993 [47] and 
1995 [38] are unfortunately still in active use. 

  

 
 

Fig. 13.13. Trial Kaupp-plot according to FN  h
3/2

 for the high-load 
spherical indentation (R approximately 250 µm) onto steel DC 01, using the 

fitted data as taken from Fig. 10 in [48]; it presents after the unresolved 
initial effect two unsteadiness kink-points that would misleadingly indicate 

exothermic events; the reasons are the undue simulation, iteration, and 
data-managing techniques for complying with the incorrect Johnson’s 

equation and with the present ISO-14577 standard; the slopes in Fig. 13.13 
have no physical meaning 

 

13.5 CONCLUSIONS 
 
A prerequisite for the analysis of spherical indentations is the use of the correctly 
deduced force-depth relation (Equation (1) that takes into account that the R/h 

ratio changes strongly during the penetration. Equation (1) describes 
experimental (not fitted) spherical indentation loading curves. Unfortunately, 
data-treatment with simulations and data-fittings are still (2020) used by ISO 
14577 prescriptions with the false Johnson Formula (here as an inequation 

                 ∗  that does not care for the R/h changes. Typical loading 

curves from spherical indentations with (untreated) experimental data for Ge, 
ZnO, and GaN are successfully analyzed. The unprecedented results 
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demonstrate the unexpected wealth of spherical indentations. The plot of the 
experimental data according to Equation (1) is linear with kinks at the phase-
transition onset points (one, or two within the loading ranges). In addition to the 
onset force and onset pressure one obtains the phase-transition energy. These 
values are of great value for the rating of the materials’ compliances and for 
avoiding phase-transitions with their dangerous polymorph interfaces by 
overloading. These are mayor advances of experimental spherical indentations. 
The transition onset pressures can be compared with available anvil pressure 
onsets, because we are close to hydrostatic conditions. In the case of 
germanium, our calculated onset pressure favorably supports the results of the 
anvil experiment that had formerly been questioned. It turns out that low-pressure 
phase-transitions under anvil pressurizing are either not resolved, or too rapidly 
overrun, or simply overlooked. Our detected polymorphs under the sphere calotte 
are also reasonably attributed. The most favorable uses of experimental 
spherical indentations are the expansion of the mechanical characterization of 
materials and the controlled synthesis of the various polymorphs that is much 
easier than by any other technique. The polymorphs are located at a most 
favorable site under the sphere calotte cap, clean and next to their preceding 
less dense polymorph. That opens new horizons for their structure elucidation by 
X-ray diffraction and spectroscopy. This should become the method of choice for 
the characterization of other solid materials with their polymorphs. 
 
Any trust in the historical concepts and formulas is unsuitable and dangerous. 
Despite their apparently general use, one must strongly reject the false ISO-
Johnson formula and all connected false theories that neglect the R/h 

dependency. It should have been seen before by Authors, Reviewers and 
Editors, when looking at the abounding printed circles in most of the relevant 
papers. There is no excuse when black-box routines in their instruments might 
have automatically simulated, iterated, and data-fitted. Furthermore, the technical 
users who apply the JKR technique for the evaluation of adhesion properties (cf 
[6]) should also be alerted for checking, whether they use experimental or 
falsified force-depth related quantities, for obtaining reasonable results. 
 
We finally state that valid reported spherical indentations are very useful for 
complementing the highly demanding and less sensitive hydrostatic pressurizing 
experiments. They reveal also the lower-force phase-transition pressures that 
might have been hydrostatically overlooked under the anvil. It will be possible 
now to recognize and stop the widespread data falsifying techniques not only for 
regaining the scientific reputation in the field of indentations. Peer Reviewers 
must no longer support data falsifying fake papers. It is not enough when 
historical authors are cited with their paper titles, but without referring to their 
antiquated content, or when black-box manipulations produce exact coherency 
with erroneous equations. The risk of false technical materials’ properties will be 
removed by the sorting out of falsified data and by urgent repetition of the 
corresponding indentations, if the original experimental data are no longer 
available for revised publication. The various new possibilities with experimental 
spherical indentations provide all of the further important characteristics of 
phase-transitions. They open new horizons for creation and structural 
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characterization of yet unknown polymorphs of materials. For technically used 
materials they tell how to avoid dangerous cracking, originating from polymorph 
interfaces, which often continue to disastrous crashes [5,13] in daily life upon 
overloading. General help is required for reaching physically sound indentation 
analyses. Applications for the urgent replacement of the incorrect loading 
equations with the physical and mathematical correct formulas (1) and (3) have 
been filed by the author for a hopefully soon coming revision of ISO 14577. 
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ABSTRACT 

 
A precise method for revealing mechanical properties is nanoindentation. 
However, such elucidation calls for physically based loading curve interpretation, 
which is largely still not done. The most significant phase-transitions under load, 
which happen often, cannot be detected by using indentation hardness H and 
indentation modulus Er. The assertion that H vs E plots always correspond 
linearly is neither experimentally supported nor properly inferred. It is most 
hazardous and misleading because it produces incorrect material properties. It is 
incorrect to employ H/E, commonly known as the "elasticity index," in complex 
calculations for the brittle parameter, yield strength, toughness, and so-called 
"real hardness." Without taking into account phase-transitions under load, which 
necessitate the correct exponent 3/2 on h for the loading curves, the usage of 
H/E cannot show the true attributes of materials (instead of disproved 2). The 
physical data of various mollusk shells that go through phase transitions, a novel 
bionics model, and various contributions for their strengthening serve as 
examples of this. The information is contrasted with that of aragonite, calcite, and 
vaterite.  
  
Keywords: Nanoindentation; H/E ratio challenge; phase-transitions; penetration 

resistance; mollusk shells; aragonite; calcite; bionics-model. 
 

14.1 INTRODUCTION 
 
The recent publications of Labonte, Lenz and Oyen [1] which include hardness 
and moduli data from indentations onto calcite, aragonite, and nacre, and a 
multitude of other materials, or the one of Teniswood, Roberts, Howard and 
Bradby on the pyramidal nanoindentation onto aragonite of pteropod shells [2] 
are unphysical and burden with historical errors despite long known physical 
knowledge on the basis of simple arithmetic [3]. Since 2004 [4] and 2013, with 
extensive tables for all types of materials [5] it has been empirically known and 
undoubtedly physically deduced one year before 2016 [3] and also in 2020 [6] 
that pyramidal and conical indentations follow the exponent 3/2 on the depth h 
(but not 2) in the force (FN) vs depth curves, the slope of which is the penetration 
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resistance, that is the physical hardness. It was deduced in 2013 [7] and in 2017 
[8] that the Oliver-Pharr iterations that are still ISO 14577 standard violate the 
energy law for hardness H [7] and in 2017 [8] also for Er since 2017 [9] (ISO 
denotes International Standardization Organization). Furthermore, elastic moduli 
from indentations are not “Young’s moduli”, as used in [1] and [2]. Both quantities 
should not rely on the three and eight free parameters iterations. And one does 
not know which of the polymorphs of the material under the applied force was 
probed. The detection of such polymorphism is only possible by using the FN vs 
h

3/2
 relation [3,4,5]. It is known since 2010 how unsteadiness kinks in FN vs h

3/2
 

plots detect important phase transitions upon indentations in [10], in 2018 [11], 
and in numerous further publications of the present author. The calculation of 
phase-transition energies was developed in 2013 [7], in 2014 [12], in 2019 
[13,14], and in 2020 [15], the calculation of activation energies of phase 
transitions in 2014 [12]. Some updates in this area are accessible elsewhere and 
can encourage the readers' judgement [16-18]. 16] continues with still critisizing 
the work of [3,7,14] by using the disproved ISO 14577 method. Also [17] does 
not follow the undeniable deduction of FN = k h

3/2
. It again uses the disproved 

ISO-H and ISO-Er values for bio-mimetic studies on keratin with the aim to 
improve the fracture toughness. [18] performs interesting nanoindentations on 
the explosive ß-HMX for the anisotropy study of the indentation moduli, which 
might be dangerously misleading, as unfortunately still the unphysical exponent 2 
on h is used for the Berkovich impressions. But all of the physical and 
arithmetical deduced facts have been disregarded by the criticized authors who 
refer to Oliver-Pharr [19] and prefer the corresponding errors and energy law 
violations rather than checking the exponent on h of their loading curves (it is in 

all cases 3/2 and not 2). The numerous undeniable listed applications are not at 
all available with the physically false assumed exponent. Such H and Er are fake-
values and so are there from created theories of [1] and [2] that must be urgently 
criticized. 
 

14.2 MATERIALS AND METHODS 
 
The published Berkovich indentation loading curves from the Limacina Helicina 
Antarctica and Haliotis rufescens mollusks were scanned and enlarged to A4 
size. 25 to 42 data points were taken for the Excel calculation of FN vs h

3/2
 

diagrams. The regression lines of the linear branches provide the slopes as k-

values (the physical hardness) for the precise calculation of the kink position 
(phase-transition onset). These are the basis for the calculation of indentation 
work (Windent), applied work (Wapplied), full applied work (full Wapplied) and phase-
transition energy (Wconversion), using a pocket calculator (10 digits before final 
rounding). We normalize them per µN to make them comparable. The necessary 
equations are well known as repeatedly published in [3,6,14], and earlier 
publications of the present author. The criticized log-log diagrams from [1] are 
checked for its missing validity even within the long disproved ISO-H and ISO-Er 
world. 
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14.3 RESULTS AND DISCUSSION 
 
14.3.1 The Still Believed H/E (“Elastic Index”) Claims 
 
The methods of [1] are for various reasons questionable and useless. The 
authors do not explain why they claim proportionality between ISO-H and ISO-Er 
(here for Berkovich). The according to [19] defined ISO-H is FN per contact area 
Ahc that is geometrically 27.15hc

2
. The dimension is (force/depth

2
) usually 

reported as GPa. The elastic property is experimentally measured as stiffness S 
= ΔFNmax/Δh with the different dimension (force/depth). To obtain an ISO-Er with 
the same dimension as the ISO-H, one multiplies the stiffness S with 0.5 π

1/2
 

Ahc
−1/2

. This provides the further hc
−1

 for the dimension of ISO-Er as force per 
area (GPa). But the Ahc value requires one iteration with 3 and another iteration 
with up to 8 free parameters (also + or − sign selection) according to [19]. The 
plots of log H vs log Er numbers, suggesting a “≈0.05 ratio of H/Er” for 

uncountable published Berkovich indentations would at best indicate very poor 
worldwide measurements of indentations over the years if that would be reality. It 
cannot be used for the calculation of Er from H numbers with a “statistical 
confidence of 95%” and R

2
 = 0.96. For example, a hardness number H of 0.6 

GPa in Fig. 14.1 of [1] contains a spread from 6-30 GPa for the moduli Er of the 
densely overlapping entries. Or an entry at H = 7 × 10

−5
 GPa has a data triangle 

value of about 1.05 × 10
−2

 GPa for Er, while the corresponding H value on the 
H/Er line for that Er is at 4.8 × 10

−4
 GPa, which is an about 6.9-fold higher 

hardness number. These examples show drastically that the claimed linear 
relation between the ISO hardness H and ISO modulus Er numbers is not 
correct. And it will be shown in Section 14.3.2 why it cannot be correct. The 
claimed statistic confidence of 95% for the log-log plot is useless and dangerous. 
In the Figs. 1, 4a, and 4b of [1] there must be selective choices of data from old 
papers and tables (often not the more recent ones) with questionable reliability. 
And even in the more recent papers it was never considered or known which 
polymorph of the sample had been probed under load, because their onsets 
could never been seen or excluded. We also must complain that the used entries 
in Fig. 1 of [1] are not cited and the materials not named. It appears that 
numerous of these are unpublished own values. This must also be concluded 
from the caption of Fig. 14.4 in [1], where, unlike the H/Er plot, straight linear 
plots are imaged. These are for spherical and for Berkovich indentations without 
any visible deviations. Beware from the risk of H vs Er plots in view of Fig. 1 of [1] 
and beware from predictive uses from there! 
 
Particularly risky and dangerous are the use of H/Er plots or values for the 

evaluation of brittleness characterizations, critical load ratios, strengthening, 
toughness, and “true hardness”. For example Fig. 14.4a in [1] describes linear 
correlations of the brittleness parameter against the load ratio, which rests on 
(H/Er)

2
 numbers, and the normalized characteristic indentation dimension vs 

critical normalized cracking load ratios are plotted in Fig. 4b of [1]. Only some wet 
and dried materials are named here and the authors of [1] cite hardly checkable 
data collections and unpublished own data (which ones?). For example they did 
not cite the soda lime glass values from [19], which are still a present ISO-
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standard for HI and EI, even though they repeatedly invoked the “Oliver-Pharr 
analysis” or “-model”. And only a few entries are directly cited, but almost none of 
these disclosed published original loading curves that could be checked and 
used for the calculation of real properties like physical hardness, iteration-free 
elastic moduli and phase-transitions under load. 
 
Furthermore, the authors of [1] try to define and calculate a so-called “true 
hardness” Htrue = H/{1 − (H/E)

1/2
 (2/tan ß)

1/2
}
2
, where ß is the cone angle of the 

indenter. This shall be the “resistance to plastic deformation” or “resistance to 
irreversible deformation”, which “depends on the ratio between indentation 
hardness and indentation modulus”. It is strangely claimed that “a large 
indentation hardness does not imply a large resistance to irreversible 
deformation per se”. This hard to understand basis by using the H/Er fraction is 
exemplified in [1] as follows: H = 1.07 GPa and Er = 10.5 GPa shall imply “true 
hardness” of 17.8 GPa”; or H = 3.12 GPa and Er = 87.02 GPa shall imply “true 
hardness” of 10.8 GPa”. The H/Er fraction is contained in such calculations. And 

the other formulas are in the appendix of [1]. These need not be depicted here, 
due to the incorrect physical basis from the beginning. Such “true hardness” with 
exorbitantly misleading high values adds further to misleading confusion without 
any physical merit. 
 

14.3.2 The Physical Errors of the H/E Ratio Claims with Their Uses 
 
The proportionality claims of ISO-H with ISO-Er in [1] and the therein appropriate 

citations are physically wrong. They cannot be valid for basic physical reasons! 
The only correct physical hardness of conical or pyramidal indentations is the 
penetration resistance k [force/depth

3/2
] from the slope of the so named Kaupp-

plot FN vs h
3/2

. None of the cited and used HI and EI values tells which polymorph 

of the material was probed, because their onset forces cannot be found with the 
wrong exponent 2 on h. One needs such linear plots for the detection of 
polymorph formation onsets [4,10-15]. And every polymorph has its own 
mechanical properties. With other words: 
 
All of these H and Er values are unphysical and so are their ratios, because they 
rely on the disproved exponent 2 on h (instead of the FN vs h

3/2
 relation) and 

require data-fitting iterations [19]. For correct analysis of loading curves for 
pyramidal and conical indentations see [3] and [6]. Spherical indentations are 
more complicated [6], but some of the examples in Fig. 14.1 of [1] are from 
unphysical interpreted spherical indentations or Vickers hardness as in e.g. [20] 
with similar H/E ratios containing log/log plots. Unfortunately, Er numbers are not 
well defined and depend strongly on the details of their detection, as outlined in 
[9], so that one has to choose from sometimes extremely different values for Er 
when comparing different methods. 
 
The Oliver-Pharr technique and the still present ISO 14577 standard assume the 
physically disproved exponent 2 on h for the loading curves instead of undeniably 
physically deduced h

3/2
 [3], and they violate the energy law [6] [8]. Therefore the 

authors of [1] cited H and Er values that are entirely unphysical parameters. If 
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indentation hardness have to be compared with indentation modulus one should 
only take physically sound values from the so named Kaupp plots (FN vs h

3/2
) that 

most easily provide penetration resistance onsets and differentiate the properties 
of every polymorph under load. And it provides directly measured indentation 
moduli (Ephys) without any iteration. All of the trouble in Section 14.3.2 originates 
from the widespread refusal to check the exponent of their loading curves. These 
FN vs h loading curves follow always the physically correct relation FN = kh

3/2 
and 

spherically FN-s = ks  hs
3/2 

(R / hs − 1/3). All of the respective authors stay with 
the physically disproved h

2
, apparently until ISO and the authors of [19] correct 

their basic errors with public announcements. 
 

14.3.3 The Wealth of Penetration Resistance for the Physical 
Analysis as Exemplified for the Marine Mollusks Case 

 
The claims of linear relations between ISO-hardness H and ISO-modulus Er 

include nacre, eggshell, aragonite, calcite, hydroxyapatite, enamel, dentine, 
bone, etc in the unphysical and incorrect log/log plots in [1]. But their data are 
selective and none of them reveals which polymorph was probed under what 
applied load. Furthermore, it is not told which of the triangle data points around 
the regression line in Fig. 14.1 of [1] belong to which materials. These data are 
without any value. 
 
We show now that hitherto unthinkable materials’ properties are straightforwardly 
obtained on the physical analysis of indentations from correctly cited 
publications. This will be exemplified for the case of two mollusk varieties with 
their aragonite shells, including the distribution of the organic materials. The 
physical analysis of the indentation loading curve onto the polar pteropod 
Limacina Helicina Antarctica shell, as recently published with Fig. 4 in [2], yields 
the FN vs h

3/2
 diagram of Fig. 14.1. One recognizes an initial surface effect up to 

about 300 µN load (from its water content) and three linear branches that are 
connected by smooth transition zones between them. This was not seen in their 
FN vs h curve and it does never show up in the unphysical FN vs h

2
 relation with 

its false exponent 2 on h. The authors of [2] did thus not see that their calculation 
of ISO-H and ISO-Er values [19] do not at all relate to properties of their sample 
but to the third polymorph of it that is present at their maximal force. Our three 
linear regression lines with (R

2
 = 0.9994, 0.9993, and 0.9993, respectively) have 

the equations that are inserted in Fig. 14.1. The kink positions, as obtained by 
equation of two adjacent regression equations, at 1182.08 and 2958.895 µN 
loads are phase-transition onsets. With these experimental values we calculate 
the phase transition energies with the simple well-known arithmetic equations 
that are most recently comprehensively published in [6] and [14], and earlier 
publications of the present author. The obtained normalized per µN values are 
0.01496 µNµm/µN and 0.14879 µNµm/µN. Clearly, there are three different 
polymorphs up to a loading range of 5 mN load with a Berkovich. Interestingly 
these values are similar to the ones of calcite in Table 1 of [14] that are at 
0.01599 and 0.10692 µNµm/µN, respectively, although at their mN ranges. It is 
clear that we have the phase transitions with the Limacina Helicina Antarctica 
shell. 
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The smooth transition zones rather than sharp kinks that are here only seen by 
the intersecting regression lines reveals a gradual change of the strengthening 
organic material between the different polymorphs. This is certainly a bionics 
model for avoiding the crack increasing risk when unavoidable polymorph 
interfaces contact smoothly [11]. This appears to be further studied and used for 
modifying the negative effect of phase-transitions also with technical materials. 

 

 
 

Fig. 14.1. Linear plot of a “typical” Berkovich indentation onto the pteropod 
Limacina Helicina Antarctica shell with thinner intersecting regression 

lines, exhibiting an initial surface effect and three straight branches with 
comparably smooth transition zones between them. The inserted 

steepness constants k are in µN/nm
3/2

; the original force vs load data are 
taken from Fig. 4 in [2] 

 
The precise distribution of the about 5 wt% of organic material is certainly worth 
further studies. Conversely, the unphysical H and Er measurements led to the 

claim of “essentially homogenous distribution throughout the shell for 
“strengthening the cell” [2]. Furthermore, the rather strong variation of the 
averaged ISO-H and ISO-Er values in Fig. 14.5 of [2], or the report that some 
indentations were going down to 700 nm depth and others down to only 200 nm 
depth, or the observation of rough and smooth areas would also suggest a 
thorough new and physically analyzed indention. All of these strongly deviating 
results must be reproduced and separately analyzed rather than averaged as in 
[2]. Comparison of the so available penetration resistance k-values (mN/µm

3/2
) of 

the different polymorphs up to the same load maximum would tell, whether there 
are zones with more or less organic material also laterally distributed. In the case 
of micro-caverns empty or filled with water, these would show-up as spurious 
pop-ins [15]. The physical analysis technique is the only means for the distinction 
of soft and hard regions that cannot be visibly traced. 
 
It is particularly unsuitable that the authors of [2] did not compare their findings 
with the physical analysis of the Berkovich indentation onto the lamellar pteropod 
structure of the red abalone Haliotis rufescens in [5]. This pteropod shell exhibits 
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distinct well defined stepwise organic layers between the aragonite lamellas and 
the indentation curves of them are physically correct analyzed in [5]. The non-
appreciation of the well documented different strengthening bionics model is 
misleading, even though the introduction of paper [2] cites numerous old and 
very old papers on different pteropod varieties with prismatic helical and lamellar 
aragonite structures, but unduly questioned the paper of [21]. We must therefore 
resume our analyses here with the calculations on the correct physical basis. 
These add to a much better understanding of the pteropods stability with reliable 
parameters instead of iterated H and Er that are against physics. 
 
The averaged Berkovich indentation curve of the red abalone Haliotis rufescens 
shell from Baja, California [21] was physically analyzed in [14]. The exterior nacre 
shell of 250 - 300 nm thickness with kfirst-aragonite-shell = 0.9058 µN/nm

3/2
 is sharply 

distinguished by the organic layer with korganic = 0.274 µN/nm
3/2

 and the following 
inner apatite layer with k inner-aroganite-shell = 1.1495 µN/nm

3/2
. The stepwise 

behavior is also shown in the original FN vs h plot from Fig. 14.7 in [21]. Clearly 
both aragonite layers are sharply separated by the soft organic layer. The FN vs 
h

3/2
 plot in Fig. 14.2 with the inserted regression equations, as calculated up to 

400 nm depth (8000 nm
3/2

) with the inserted regression lines is totally different 
from Fig. 14.1. After a minor initial surface effect that is not part of the regression 
(5 points) two aragonite layer lines are separated by the organics line. The larger 
k-value of the first inner aragonite layer starts at a 26.9 per cent higher load and 
at higher h

3/2
. Therefore at least some of this k-value increase represents the 

shift relative to the end of the first aragonite layer. The thinner strengthening 
organic layer is considerably softer. The 16.8% difference between the k-values 

of the two aragonite layers cannot solely be responsible for their displacement. 
The second aragonite layer should also be phase-transformed at the increased 
force with an onset right above the organic layer at 4312 µN. The regression line 
values of the hard branches correlate both with R

2
 = 0.9997. 

 
However, there are difficulties for the calculation of the phase-transition energy, 
because we do not have a kink-point between the displaced aragonite layers. We 
must try to secure that the inner aragonite layer is a polymorph by a phase-
transition. Fig. 14.2 indicates that the first branch ends very close to the lower 
end of the organic layer at 4000 µN load and 287 nm depth (4853 nm

3/2
). The 

second aragonite branch starts directly at the upper end of the organic layer at 
4312 µN. This data point is already part of the regression line for the steeper 
(harder) branch. The 4000 µN load would thus be the phase transition onset 
point if the organic layer was not there. Unlike the repair of pop-ins [15], our 
phase-transition energy calculation technique is not applicable for such 
separation by a different material. A shift of the upper layer line for joining with 
the lower line at 4000 µN by formally removing the organic layer is not allowed. 
And it would not solve the problem: the steepness of the second hard layer is 
influenced both by higher FN and by higher h

3/2
 values at its start. This influence 

on the steepness cannot be undoubtedly judged and also minor corrections in 
that sense would strongly influence our precise and highly sensitive calculations. 
A phase transition part from about 4500 µN load of the hard nacre shell is 
however most likely. That judgment is in view of the k1 and k2 values of the softer 
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Limacina Helicina Antarctica shell that experiences the phase transition and the 
k1 and k2 values of the Haliotis rufescens shell that are in the same order of 
magnitude even though the shells of Limacina Helicina Antarctica are softened 
by the embedded organic layers. Final proof would require comparison with an 
indentation of pure aragonite at forces up to about 7000 µN load. Unfortunately 
we did not find accessible reliable Berkovich indentation curves of pure aragonite 
at such a loading range with smooth loading curves that are not interrupted by 
continuously repeated unloads. There is however a phase-transition within a 500 
µN loading range of pelletized aragonite from [22] that occurs with an 
endothermic phase-transition at 348 µN load We interpret it as an endothermic 
twinning of aragonite and calculate the normalized conversion energy to 0.02922 
µNµm/µN. Clearly this interesting twinning transition cannot be remarked at an 
indentation range of 7000 µN of the mollusks indentations. 
 

 
 

Fig. 14.2. Linear plot of Berkovich indentation onto the red abalone Haliotis 
rufescens shell from Baja, California [21]; image taken from [5] and with 
complete inserts that denote the penetration resistance k (their physical 

hardness (µN/nm
3/2

) with the axes cuts of the hard and the soft layers [3,6] 

 
We must report here how one can identify and exclude experimentally false 
reported data by the calculation of transition energies. The reported Berkovich 
indentation onto (001) of aragonite up to 1000 µN load from the Fig. 1 of [23] 
revealed a minor exothermic transition at FNkink = 408.6 µN when physically 
analyzed. Thus, Fig. 15b in [5] would exhibit exothermic transition energy of 
−0.00276 µNµm/µN [14]. This putative strange twinning of aragonite appeared to 
be a specialty of the (001) face of aragonite. It was hardly resolved in the 
indentations of nacre up to 7000 µN load and must be cancelled now in Table 1 
of [14]. This failure is an important application of the calculation of phase-
transition energies, because it helps to eliminate undue measurements. The work 
of [23] failed, because the loading curves were averaged and pop-ins was also 
reported with three imaged individual curves on the probed surface. Their 
inclusion in the curves averaging constructed the exothermic event. It is still not 
widely recognized that pop-ins are instrumental errors due to distortions that 
must be repaired or eliminated from further use [15]. The pop-in generation in the 
present case was probably by touching of tip sides with terrace steps on the 
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probed surface (further reasons of pop-in distortions are listed in [15]). Any 
averaging of experimental curves must be strictly avoided. Only the results from 
all individual undistorted curves should be averaged. The curve for (001) in Fig. 
14.1 of [23] and its analysis in Table 14.1 of [14] must be disregarded. 
 
The behavior of aragonite must now be compared with the other ambient 
modifications of CaCO3. Hexagonal calcite, orthorhombic aragonite, and 
hexagonal vaterite crystallize in the respective space groups R3−c, Pbm6n, and 
P63/mmc. Their X-ray densities are 2.71, 2.93, and 2.93 g/cm

3
, respectively. The 

most frequent twins of calcite occur along (10 - 11) by mechanical stress on (01 - 
12) and those of aragonite on (110) by mechanical stress on (010) [24]. So there 
is the possibility of mechanical twinning by pressure. Such twins of aragonite are 
orthorhombic Pmcn. Vaterite twins have been found in pearls [25]. All three 
modifications occur as minerals. Aragonite and vaterite (with some organic 
material) are primarily of biological origin as in pearls or mollusk shells, and 
vaterite in gallstones and nephritic stones and plants (e.g. [26]). An important 
point is the repair of deformed Gastropodes’ aragonite shells with vaterite 
attachments [26]. The loading curves of calcite up to 10 mN [27] and up to 40 mN 
[28] have been analyzed in [14] to give conversion energies of 0.01599 
mNµm/mN and 0.1069 µNµm/µN for the second phase transition. 
 

14.4 CONCLUSIONS 
 
It appears more than surprising that a paper like [1] is still prepared (and can 
even be published) that rests on disproved historical errors. Since these are 
against physics, their mechanical parameters required data manipulating 
iterations and more and more extremely complicated theoretical treatments, as 
shown here in Section 3.1. Such behavior is still not stopped by the International 
Standardizing Organization with its ISO 14577. This Organization is very slow 
with the revision of their standards that still enforce industries for being certified. 
It did not yet help that the easily empirically found (since 2004) [4] and 
straightforwardly deduced (convincingly published in 2016 [3] and in 2020 
enhanced [6]) physical equations can be simple reproduced. They are 
successfully published and provide numerous unprecedented arithmetic 
applications. But influential people, who stick to history and did or taught it 
always historically, are restrictive. Unfortunately, the false characterization of 
mechanical properties is continuously leading to catastrophic disasters. But for 
perhaps obvious responsibility reasons, it is not tried to assign the reasons for 
these disasters to poor alloys in need of improvement for airplanes, for public 
bridges, and all further construction materials. Upon catastrophic events, one just 
refers to obeying ISO standards and tries for example in the case of continuing 
airliner crashes only to blaming pilot errors or deficient piloting control software, 
but not also to unfit physically incorrectly analyzed materials. Thus, indentations 
revealing phase-transition onset control of the materials upon mechanical (cf. 
Fig. 14.1) and thermal (cf. [12]) stress are disregarded, ignored, or denied. But 
why not avoid braking turbine propeller blades with improved alloys that 
withstand higher forces before phase-transition onsets occur [14]. We also 
complain the cracking between wing and fuselage (pickle fork) and hundreds of 
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grounded airliners with multiple clefts on fuselage, etc. These are materials’ 
failures. Pickle forks must not just be repaired, but constructed with improved 
alloys and replaced. The checking and improving of the alloys must be for 
increasing the phase-transition onsets forces and energies. Polymorph interfaces 
from phase transitions are sites for cracks’ nucleation with catastrophic failures 
[11,12,13,15]. The detection of phase transitions under load is still not part of ISO 
14577, because it cannot achieve them by using the false exponent 2 on h 
instead of 3/2 from indentation loading curves. 
 
An H/Er ratio (also called “elasticity index”) is unphysical, as are ISO-H and ISO-
Er. Physical hardness is Hphys = k = FN / h

3/2 
(k in force/depth

3/2
) for conical and 

pyramidal indenters. And the not iterated physical modulus is Erphys = (d1.25FN / 
dh) / A. [8, 29] for obeying with the energy law. Modern instrumentation provides 
enough data points for the initial linear slope that is stiffness S of the unloading 
curve. The assumed but not physically deduced linearity between H and Er has 
not been demonstrated by the log-log plot in Fig. 1 of [1] with a “statistical 
confidence of 95%” and R

2
 = 0.96 for the selected materials by not considering 

their undetermined phase-transitions that are however most frequent for all kinds 
of materials upon load. Even under these unsuitable conditions the actual 
deviations are very often enormous. However, most materials have to be again 
indented when neither original data, nor published FN vs h loading curves had 
been published. ISO-H and ISO-Er values cannot reinstall the physical 
indentation results, due to the exhaustive data fitting iterations. It has to be 
rejected that the H/Er ratio is used for defining a so-called “true hardness” with 
extremely high useless values of hardness and moduli. Also the revival of the 
complicated formulas, using H/Er ratios for brittle parameter, yield strength, and 
toughness, is misleadingly incorrect and useless. Correct unprecedented 
qualities of materials (as exemplified in Section 3.3.) are to be deduced from a 
physically sound basis. The easily obtained experimental achievements on the 
basis of the physical analyses of indentations are withheld in [1] from its 
audience of biologists, pharmacists, physicians, theoreticians, and other readers. 
 
The exemplarily analysis of the indentations onto seawater mollusks shows that 
ISO-H and ISO-E values are unable to differentiate between the construction 
principles of different mollusk shells. The aims to solve important biological 
questions are not attained and so are the theoretical speculations. It requires the 
so named Kaupp-plot (FN vs h

3/2
) for most easily and rewardingly revealing the 

striking differences. In the case of Limacina Helicina Antarctica the linearized 
loading curve undergoes two phase-transitions in the load ranges up to 5 mN. 
The within aragonite distributed material cushions shocks so that the shells are 
protected. We quantified the phase-transition onsets and energies that reflect the 
details for the lattice conversion in Section 14.3.3. A new bionics model is 
extracted from the shell behavior. Its cell strength is achieved by mitigation of the 
dangerous effects of polymorph interfaces by softening with gradual approach to 
polymorphs interface from the unavoidable phase-transitions. This bionics model 
should become most useful for technical materials that are exposed to 
mechanical forces that induce phase-transition onsets in e.g. ballistics or 
earthquakes etc. Furthermore, these results open up new technical and 

https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref11
https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref12
https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref13
https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref15
https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref8
https://www.scirp.org/journal/paperinformation.aspx?paperid=107819#ref26
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biological insights. Further indentations onto Limacina Helicina Antarctica, as 
requested in Section 14.3.3 will in the future facilitate the crystallographic 
understanding of these phase-transitions with eventually further bionics models. 
Totally different is the already known bionics model of Haliotis rufescens. It uses 

alternating layers of the thin soft organic material between thicker aragonite 
layers for cushioning. Also further studies with the numerous further mollusks 
become worthwhile and promising now. Variations of the layer thickness and 
detailed structures in the not layered varieties with respect to environmental 
conditions will provide biological answers. Also snail-shell indentations should be 
physically analyzed, but not with the disproved and unable techniques in Figs. 
14.1 and 14.2 of [1], as discussed in Section 14.2. 
 
Further advances of the physical analyses, in addition to the precise detection of 
phase-transition onset forces and energies for explaining and avoiding 
catastrophic failures, are the sorting out of initial surface effects, the detection 
and elimination of experimentally false reports with the calculation of phase-
transition energies and the distinction of phase-transition onsets from those of 
different material layers. When measured at various temperatures one can also 
calculate the activation energies of phase-transitions [12]. None of these 
achievements are available from H, Er, H/Er and there from deduced obsolete 
techniques, because they are all unphysical. 
 
The future will detect and understand further phase-transition onsets and 
energies from all kinds of materials. This opens their discussion for the widening 
of their understanding and applications, and the search for further bionics models 
appears promising. 
 
It is hoped that not only biologists, pharmacists, physicians, and also industrial 
Engineers take their chance to increase and revise their knowledge for 
preventing dangerous disasters by using the penetration resistance instead of 
ISO-H and ISO-Er. The revision of ISO-14577 must also be accelerated. It is 
strongly hoped that ISO 14577 and the authors of [19] correct their basic errors 
with public announcements as soon as possible for a safer world. 
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ABSTRACT 

 
To shed new light on this crucial area of study and application, a thorough 
explanation and extension of the iteration-free physical description of pyramidal 
indentations using closed mathematical equations are provided. All computations 
are easily repeatable and ought to be encoded into instruments by their 
manufacturers to make general use even simpler. The resulting forces and force 
directions are inferred and presented, along with formulas for the volumes and 
side-areas of Berkovich and cubecorner as functions of depth. The full 
comparison of various indenters on the mathematical reality is made possible by 
all of these. The values of pyramids are significantly different from those of so-
called "equivalent cones." The worldwide use of such pseudo-cones is in severe 
error. Disproved is the previously asserted and employed 3 times greater 
displacement volume with cube corner than with Berkovich. At the same applied 
force, both move the same amount. Experimental evidence is used to support the 
previously unreported mathematical findings for both the sharp-onset phase 
transitions and the physical indentation hardness. Phase-transition energies are 
calculated. New fundamental insights are provided by comparing the two 
indenters. The phase transition onset force is identical for isotropic materials, but 
the transition energy is greater at the cube corner due to a higher force and 
flatter force direction. The cube corner is now eligible for studies on fracture 
toughness. The alleged "friction with the indenter" is not what causes the pile-up. 
Under pressure, sliding along cleavage planes and channels occurs in 
anisotropic materials both internally and externally. The depression volume is 
increased by their volumes. These quantities are crucial for managing pile-ups in 
the best possible way. Crack-nucleating polymorph interfaces are created during 
phase transitions. Technical materials must be created with onset forces greater 
than the maximum stresses imaginable (at airliners, bridges, etc.). This requires 
urgent revision of ISO 14577-ASTM standards. 
  
Keywords:  Closed mathematical formulas; force direction; indenter volumes and 

side-areas; iteration-less calculations; equal base-area cones; pile-
up; phase-transition-onset and -energy. 
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15.1 INTRODUCTION 
 

15.1.1 The Force vs Indentation Depth Relation 
 

Physical and mathematical innovations that described (nano)indentation by 
considering the energy conservation law and the penetration volume of the 
submerged indenter, rather than the basal indenter area, were made in 2013 and 
2016. The experimentally discovered h

3/2
 vs applied normal force (FN) connection 

rather than h
2
 for pyramidal and conical indentations from 2004 [3] was 

conclusively demonstrated by [1] and [2] to be true. Additionally, 22 linear FN vs 
h

3/2 
plots using virtually every type of material had already been reported in [4]. 

This rightfully opposes to the nevertheless still common belief in incorrect “h
2

”, 
losing all information from it (no physical hardness, no initial surface and tip 
rounding effects, no phase transitions, no possible gradients). Similarly, the 
iteration of the loading curve exponent for best-fitting of the loading curve etc 
wipes out all these information. Still worldwide believed is the using h

2
 derived 

ISO 14577-ASTM hardness (International Standardization Organization and 
American Society for Testing and Materials) from conical and pyramidal 
indentations that is used in available tabulations, peer-reviewed scientific 
publications, and industries. It is unduly defined as force over projected basal 
contact area. But why is that so? The applied force does not press to the basal 
area of the indenter! It must be the result of the still retained wrong exponent for 
the loading curve. The readers may be interested in certain updates in this topic 
that are available elsewhere [5-7]. While [5] presents the investigations 
arithmeticly, [6] is using "fundamental physics instead of the typical rigorous 
mathematical process" for AFM but is still claiming "Young's modulus", and [7] 
still depends on simulations. And [8] is the complete background of ISO 14577-
ASTM. 
 

15.1.2 ISO and ASTM Hardness and Modulus 
 

According to [8], the area function of the “perfect” Berkovich is   c       c
  

where hc indicates contact height. The constant had been checked with the 
compliance C (inverse stiffness) vs A

1/2
 plots from the “two  ig est” (120 mN) 

indentations in aluminium of [8]. Ahc is iteratively “refined” for the not ideal 
indenter to give the fitted “contact area” Ahc for other materials. At first the 

unloading curve exponent is iterated with 3 free parameters (fitted unloading 
steepness). Secondly, the area is iterated with 8 free parameters C1 - C8. The 

first guess of them is      c
  and the further 8 exponents on hc decrease via 1 to 

1/128 for fit with the aluminum data. For smaller depths the fit is for the 
corresponding fused quartz data. That leads to the fitted contact depth  c  
  a      a   . The ε is a disputed factor. The necessary stiffness S is defined 
after differentiation of the fitted unloading curve as dFN/dhmax, and the fitted 

reduced elastic modulus is  r-               c
     This does not consider that 

only part of FNmax is responsible for the depth h [1]. All of these iterations from [8] 
are the ISO 14577-ASTM International standard. They are automatically 
executed with the commercial indenters to provide iterated ISO-hardness H 
[N/depth

2
]. 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref5
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Furthermore, the equally iterated Er [N/depth
2
] is not at all the claimed “Young’s 

 odulus”. The latter is, of course, a strictly unidirectional property out of the 6 by 
6 matrix of Young’s moduli that finally, depending on crystal symmetries, gives 9, 
7, 6, or in the cubic case 3 independent always very different Young’s moduli. 
That is generally known and communicated, but here falsely disregarded. 
 
The common use of the false exponent on h followed by exhaustive iterations 
and false definitions is dangerous. All of that creates false materials properties 
and it denies phase-transitions under load with their polymorph interfaces. 
Unfortunately, that is still enforced by ISO 14577-ASTM for technical materials 
with catastrophic risks. 
 

15.1.3 The Mathematics with the Correct Exponent 3/2 on the 
Depth h 

 
The undeniably [2] correct physical hardness from conical and pyramidal 
indentations is obtained as k (FN/h

3/2
), which is the penetration resistance as 

slope of the experimental linear FN vs h
3/2

 plot (also called “Kaupp-plot” since 
2004 and 2016) as Equation (15.1). It must be corrected for any axis cut Fa to 
give (15.2). Such axis cuts can be positive or negative due to various surface 
effects. They are excluded from regressions. The various reasons for initial 
surface effects have been amply discussed in preceding publications. Sample 
surfaces are not always free of layers (twins, oxides, hydroxides, chemical and 
mechanical pre-treatment such as polishing etc). Their separate elucidation 
requires indentations with very small depth ranges. Axis cuts are corrected for in 
a straightforward way. 
 
It is the iteration-free and undeniable mathematics that reaches correct physical 
data of materials and totally new ones from (nano)indentations. Examples are the 
physical indentation hardness [1,2,3,4], the previously undetectable phase-
transitions under load as kink unsteadiness on the FN vs h

3/2
 plot (e.g. Fig. 15.2 

[2] ), and the phase-transition energies. The phase-transition energies are now 
normalized per depth region. Unfortunately, the presently still used concept of 
“work  ardening” with iterated exponential functions is meaningless, dangerous, 
and obsolete. The formed polymorphs can be spectroscopically identified and 
they create dangerous interfaces after their sharp onset with the non-transformed 
material. Polymorph interfaces are sites for crack nucleation. 
 
For the mathematical description of the pyramidal or conical indentations on a 
physical basis the formulas from [1] are below extended and completed, and their 
use is outlined. For their deduction it was first necessary to distinguish applied 
work Wapplied from indentation work Windent [1]. The latter is the work for the 

impression. The former contains additionally the work for pressure formation to 
its environment and all types of plasticizing. The whole indentation process 
subdivides 80% of the applied force for the inverted pyramid or inverted cone 
formation and 20% of it for pressure and all kinds of plasticizing. This always 
mathematically precise 4:1 ratio in (15.3) has been mathematically deduced in 
2013 [1]. In the case of phase-transition upon indentation the sharp kink 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref2
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref2
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unsteadiness occurs in the FN vs h
3/2

-plot, separating linear branch 1 from linear 
branch 2 with different slopes k1 and k2. These are the different penetration 
resistances (hardnesses), in e.g. mN/µm

3/2
 units of the involved polymorphs. The 

hkink and the FN-kink values for W1-applied are easily obtained by equation of the 

regression line formulas from the two branches for the triangle Equation (15.4). 
For the W2-applied value one has to integrate (15.2) to give (15.5) that is multiplied 

with 1.25 according to (15.3) and it is added to W1-applied for obtaining  Wapplied. 
The latter is subtracted from full Wapplied to obtain the transition work Wtransition up 
to h2 [1,9] (h2 is freely chosen; perhaps at the depth where another kink deviation 
starts). The transition-energy is calculated according to (15.7). Its normalization 
is now by division through the depth difference (15.8) (no longer through the 
force difference) for better comparison of different indenter tips. 
 
An analogous procedure is applied for multiple phase-transitions from kink to 
kink. That purely algebraic sequence of calculations has been performed to 
numerous materials by the present author for endothermic and exothermic phase 
transitions under load. These will now be augmented with different materials and 
comparison of two different indenters. Again, phase-transitions cannot be 
obtained by iterative fittings including finite element calculations. Their onset 
forces and transition energies are important for daily life security, because the 
formation of polymorph interfaces can be sites of catastrophic initiations of 
crashes. 
 

                                                                                                    (15.1) 
 

          a                                                                                   (15.2) 
 
Windent = 0.8 W                                                                                                                      (15.3) 
 
 indent       -applied      kink  -kink                                                 (15.4) 

 

  -indent          
     kink

       -a     kink                                   (15.5) 

 
                                                                                         (15.6) 

 
 transition  full  applied     applied                                                     (15.7) 

 
                                                                              (15.8) 

 
15.2 MATERIALS AND METHODS 
 
A fully calibrated Hysitron Inc. Triboscope

®
 Nanomechanical Test Instrument with 

2D transducer, leveling device, and direct combination with a Nanoscope II 
atomic force microscope (AFM) was used for the aut or’s (nano)indentations. 
Loading times were 30 sec, force-controlled in contact mode. The radii of the 
cubecorner (55 nm) and Berkovich (110 nm) diamond indenters [4] were directly 
measured by non-contact AFM at a Park NX20 atomic force microscope from 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref1
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref4
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Park Systems. Highly resolved microscopic images were obtained with a digital 
3D microscope from Keyence Ltd., model VHX - 100 K with almost uniform 
coaxial vertical illumination through optical fiber, ring lenses, and 45˚ half mirror. 
A CCD-camera recorded the light of the halogen lamp, as coaxially reflected 
back by the sample through the half mirror. The chosen focal depth steps were 
down to 1 µm. 
 
Most preferable for the analysis of AFM loading curves is the direct calculation of 
all instrumental data points (about 20,000) according to (15.2) as loaded to 
Excel

®
. For published loading curves, with reasonable experimental description, 

the data digitization is obtained after paper filling enlargement with the plot 
digitizer 2.5.1 program (https://www.softpedia.com/) giving 50 - 70 data-pairs, or 
manually 20 to 30 data pairs. Visual inspection of the printed Excel

®
 FN vs h

3/2
 

plots look for the linear ranges, surface effects, obvious gradients, and other 
peculiarities (e. g. non-linear force application). The kink is sharp, but there might 
be some short soft transitions in buffering biological materials [10] or at too rapid 
penetration. The bearing analysis routine [11,12] is used for the measurement of 
depression and pile-up volumes with respect to the plane through the respective 
edges and corners. We did not use the complicate formulas with numerous 
assumptions of [13]. 
 
Fig. 15.1 looks quite smooth but Fig. 15.2 shows a much extended initial effect, 
some minimal displaced points in the kink region and a deviation above 90 mN 
load. The initial effect study would require separate indentation to about 20 mN 
load. It is possible that there is another transition, as perhaps twinning. 
Endothermic twin formation of tungsten is indeed initiated by application of shear-
force to tungsten [14]. The final deviation must here be excluded from further 
consideration, because it also occurs comparably with 6 materials all above 90 
mN load in [8]. But for k1 and k2 there exists no ambiguity due to correlation 

coefficients R
2
 of 0.9995 and 0.9996. It appears to be a poor instrumental 

compliance above 90 mN or non-linear force application from that point. This has 
been revealed in [15]. Our analysis is versatile enough to reliably determine the 
phase-transition energy despite such particular difficulties. This technique is not 
of the Arrhenius type and does not require indentations at different temperatures 
as with activation energies from indentations as in [16]. 

 

The formulas (15.1) through (15.7) contain all information, but a step-to-step 
description of the calculation is also necessary. Due to exponents, sums and 
differences it appears necessary to calculate with 10 figures, so that the 
experimental errors are not increased by the calculations. For the transition 

energies we equate the regression lines (R
2
 must be >0.9995)   -     

    

 a-  and   -     
     a-  to obtain  kink

   
 , hkink,  kink

   
 , and FN-kink. W1-applied is 

then calculated according to (15.4). W stands for work or energy. The subscript 
“kink” describes t e s arp intersection of t e regression lines t at is t e “kink-
unsteadiness” at t e onset point (dept  and force) of t e p ase-transition. 
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Fig. 15.1. Force vs depth image with Berkovich onto tungsten from Fig. 15.9 
in [8] 

 

 
 

Fig. 15.2. FN vs h
3/2

 plot according to (15.2) of the curve in Fig. 15.1) with 
regression equations in the selected ranges (kink at 0.460254957 µm

3/2
 and 

41.28319258 mN); the slopes are the physical hardness k (mN/µm
3/2

); the 
initial part is cut off and should be separately studied with lower force 

range; a short intermediate range around the kink point is not part of the 
regression 

 
The force value Fend (>FN-1) for the calculation of W2-applied can be chosen at will 
(in the case of a following higher phase-transitions one chooses the value for 

hmax = hkink-2). One then calculates   a 
   

 , hmax and   a 
   

 for   - a      a 
     a-  

.With these and obtains         a 
     kink

   
 and      a   kink  One has thus 

all mathematical values for the calculation of the indentation work. W2-indent 

according to (15.5) gives W2-applied = 1.25W2-indent according to (15.3), so that  
Wapplied can be formed. The value of full Wapplied is 0.5FNend hend, because the 
previous calculations corrected for both axes cut Fa-1 and Fa-2. 
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The transition-energy (15.7)  transition  full  applied    applied is then divided by 

Δh to finally obtain normalized Wtransition/µm (mNµm/µm) values. These 
characterize the phase-transition onset of the material in question. Different 
materials can be compared and calculations for any wished depths and forces 
are possible. A corresponding sequence applies for higher phase-transitions at 
higher forces. 
 

15.3 RESULTS 
 
15.3.1 Verification of the Transition-Energy Calculations 
 
The determinations of the phase-transition energies are tested at a practical 
example from the literature. For example, Fig. 15.1 shows the FN vs h curve that 
is the basis of the still used iterative ISO-hardness (HISO) and ISO-modulus of 
tungsten, which is used as indentation standard, and not considering the phase-
transition unsteadiness for calibrations up to 120 mN, even though compliance or 
linearity are unfortunately miscalibrated (also for the other standard materials in 
[8]) and despite the particularly pronounced flaws that are challenged in the 
Introduction. We open the possibility for nevertheless using such published 
experimental loading curves for the non iterative penetration resistance (k 
mN/µm

3/2
) calculation and detection of phase-transitions with their onset force 

and phase-transition energy in the valid regions. 
 
The purely arithmetic calculations remove the initial effects, less precise data-
pairs close to the kink point, and deviations due to non-linear force applications. 
After these strict precautions it can be tested whether the same result is obtained 
for Wtransition/µm when the different selected forces at 60 and 90 mN are chosen 

from the tungsten curves in the Fig. 15.1 and Fig. 15.2. Table 15.1 collects the 
test results as calculated according to (15.1) - (15.8) with 10 figures. The 
calculated values of Wtransition/Δh from the different end forces confirm the 
correctness of our formula scheme. The very low differences of 0.665 × 10

−6
 % 

(due to rounding) also confirm that the errors by the calculation using exponents, 
summations and subtractions strongly disappear in relation to unavoidable 
experimental errors. 
 
It is therefore advisable to perform a computer program for the calculation of 
phase-transition energies in the future. However, the independent expert scrutiny 
by using the physically correct FN vs h

3/2
 plot of the experimental data from 

conical or pyramidal indentations remains indispensable. The situation with 
unfitted data of spherical indentations is described in [17] and [18]. 
 
This Table 15.1 indicates the calculation procedure and the precision of the 
calculations with 10 significant figures for at the end obtaining reasonably 
rounded results. The normalization of the transition energy at the onset kink point 
is now per depth region (hfinal - hkink). 
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Table 15.1. Calculation test from   -                    and   -  

                  for Wtransition of tungsten at different chosen end 
forces from Fig. 15.2 

 

Fend 60 (mN) 90 (mN) 

hkink (µm) 0.596118111 0.596118111 
FNkink (mN) 41.28319258 41.28319258 
Wapplied-1 (mNµm) 12.30482939 12.30482939 
Δh (µm) 0.133888326 0.326171522 
Δh

5/2
 (µm

5/2
) 0.180953682 0.542532597 

Windent-2 (mNµm) 6.759209506 21.12441884 
Wapplied-2 (mNµm) 8.449011820 26.40552356 
SWapplied (mNµm) 20.75384127 38.71035295 
Full Wapplied (mNµm) 21.90019311 41.50303349 
Wtransition (mNµm) 1.14635184 2.792680535 
Wtransition/Δh (mNµm/µm) 8.561999946 8.561999889 

 

15.3.2 Phase-Transition Energies 
 

It is important to distinguish the modification of the indented material and the 
indented surface of crystals. For example quartz (SiO2) occurs as amorphous 
fused quartz and α-quartz (rocksalt), the latter with surface twins that can be 
cautiously removed by polishing if necessary. Also water layers will form at 
ambient atmosphere. Furthermore, Cristobalite, Coesite, Stishovite, and 
Seifertite are at ambient conditions metastable polymorphs of quartz. The latter 
two have been synthesized and are also known as Meteor crystals. The 
indentation onto Stishovite produced probably Seifertite and another still higher 
energetic as yet unknown polymorph, but none of the lower energy polymorphs 
of SiO2. All of these give different results upon indentation [9]. 
 

The amorphous to amorphous transition of fused quartz is well known. 
Nevertheless the present ISO 14577 still uses fused quartz for indentation-
instrument calibrations, which is another source of error when not taking care of 
it. The phase-transition energies can be negative (exothermic) or mostly positive 
(endothermic). The exothermic ones of iron (100) and (110) as well as of 
InGaAs2 have been published in [15] and [19]. Also the 5 indented different faces 
of α-SiO2 undergo the phase-transition exothermically [15] and [19]. 
 
The already published indentations with endothermic phase-transitions of 
superalloys including aluminium and γTi-6Al-4V in [19] are of particular 
importance in view of flying safety and require most scrutiny. Light titanium-
aluminium-vanadium alloys are the preferred materials for airplane constructions. 
The present author complained in his publication [19] and in preceding world-
wide lectures the low phase-transition onset forces and the low phase-transition 
energy of γTi-6Al-4V alloy that are much inferior with respect to pure aluminum 
and superalloys. For example, the phase-transition onset of the Vitreloy-105 
metallic glass occurs at 58 fold higher onset force and at 108-fold higher phase-
transition energy. All of the various researchers who indented onto and published 
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on this and related TiAlX alloys did not check for phase transition onsets, but 
they persisted on the unphysical ISO-ASTM standards. They are urgently asked 
to reanalyze and publish their original experimental data. The present author 
urgently exacted and exacts that the builders of airliners must check and improve 
their technical alloys by physical indentation (h

3/2
 not h

2
 and no iterations). 

Phase-transitions under load must be recognized, detected, and characterized. 
Their onset force and transition energy must be increased with improved alloys 
for much higher phase-transition onset forces and transition energies. Phase-
transition polymorph interfaces are crack nucleation sites that must be avoided 
upon operation [20]. The justification of these urgent reports followed soon: 
propeller blades, one with a deadly accident, broke twice from a turbine and hit 
the fuselage within one year from the same type of airliner. Obviously alerted by 
[19] and [20] hundreds of airliners were together grounded for months due to 
scratches even at the pickle forks between wings and fuselage, but several 
catastrophic airliner accidents still occurred. Unfortunately, sharp onset phase-
transitions under mechanical load with their polymorph interfaces formations are 
not detectable with the disproved [2], but still binding ISO-ASTM standards that 
continue to be an enforcing part of the industrial certification. This must be 
urgently and immediately changed, for safer flying and safer daily life. ISO and 
ASTM representatives are being personally informed since long ago. 
 

Numerous further phase-transition onsets and endothermic transition energies 
are published in [19] for calibration standards, silicon (two faces), strontium 
titanate (3 faces), numerous salts, polymers, wood, and organic crystals. These 
cannot be repeated here. 
 

15.3.3 The Comparison of Berkovich with Cubecorner Phase 
Transitions Using the Indenter Volumes and Side-Areas 

 

While the Berkovich indenter is ISO standard in indentation testing, the steeper 
cubecorner has advantages for the study of fracture toughness. Actually, the 
cubecorner appears more appropriate for the fracture toughness measurement 
by indentation and we can explain it. Fracture toughness is commonly calculated 

as                          where c is the crack length, H and E are ISO 
hardness and ISO falsely so-called “Young’s elastic  odulus”. The 0.036 is an 
empirical constant “fro  a fit” for cubecorner, but the E/H values are taken from 
Berkovich indentations [21]. Clearly, Berkovich and cubecorner indentations 
provide different results. The strange claims in that paper of the Oliver-Pharr 
group that the “ ardness measured with the two indenters should be about the 
sa e” and the unpardonable claim that “t e cubecorner geometrically displaces 
more than 3 times the volume of the Berkovic ” at the same force are 
nevertheless unduly acknowledged. For example, it is used in [21] with citation of 
[8]. Also Wang [23] falsely claims that the cube-corner transforms more than 3 
times the volume of the Berkovich “for a given load, and thus produces “ ig er 
stress beneath the indenter”. On the other hand [24] claims that “t e Berkovich 
indenter probes a volume approximately 8-times bigger than the cube-corner” 
and “t e Berkovich indenter distributes the load over a wider area with respect to 
the sharp cube-corner indenter”. All of these contradictionary published claims 
are more than disturbing. Clearly, the physical hardness (k-value as slope of the 
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FN vs h
3/2

 plot [2]) and indentation modulus from cubecorner and Berkovich 
results are different. Also ISO-hardness H and ISO-so-called “Young’s” modulus 
E depend on the indenter acuteness [24]. Numerous fitting simulations exist, but 
experimental comparisons on the basis of published experimental loading curves 
are rare. It was however not taken into account, that the cubecorner must create 
the same indentation volume (plus eventual pile-up volume) than the Berkovich 
at the same force, because the energy law cannot be disregarded. The same 
applied work creates the same volume. This can be seen in Table 15.2 and 
Table 15.3. It is not seen by Bor et al. [24] who simulated fracture toughness 
again with H and E from Berkovich and cracking with cubecorner on the energy 
law violating 1:3 volume ratio basis with Berkovich and cubecorner. This paper 
tries to explain the differences upon indentations with the two-dimensional shape 
of broader Berkovich and more acute cubecorner and a poorly comprehensible 
“densification” of material at the steeper cubecorner apex. Clearly, the obvious 
fact is not considered that the material is displaced at the faces of the tip that 
penetrates much deeper than the Berkovich. Inverse triangular pyramids are 
formed in the material with different bases and depths. And again, their totally 
displaced volume must be equal at the same applied force, as the energy law 
must not be violated (see also Section 3.5). Thus, we cannot agree at all with the 
lengthy argumentation in [24]. 
 

It appears urgently important to deduce an undeniable mathematical basis for the 
explanation of the remarkable differences between the indenters, despite of the 
same displaced volume (including eventual pile-up volume). There were no 
mathematical formulas for the volumes of Berkovich and cubecorner diamond 
indenters as a function of depth. These pyramids are characterized with 
“equivalent” cone angles and with the known angles β from centerline to face 
(e.g. [24]). Unfortunately, the reason for different results has never been 
discussed with respect to indenter volumes. These angles β are 65. 7˚ for 
Berkovich and 35. 64˚ for cubecorner [25]. They have obviously never been 
used for the calculation of the indenter volumes as a function of the measured 
depths h. We need them to relate the normalized Wtransition values from 

indentations with the different indenters and for understanding the differing 
mechanical parameters. These include physical hardness, transition onset and 
transition-energy. Unfortunately, published experimental comparative loading 
curves with good precision for both indenters and suitable indentation forces at 
related or better equal force ranges are not very abundant. But the values from 
Table 15.3 indicate viable examples for the mathematical evaluation. The 
inclined 3D-sketch of an inverted pyramid in Fig. 15.3 with the equal-sided basal 
triangle on top indicates how the volume and side-area of three-sided straight 
pyramids as a function of the angle β can be mathematically described on the 
basis of elementary geometric formulas, by using basic trigonometry. 
 

For the volumes of three-sided Berkovich and cubecorner we use the 
mathematical formula for the area of the basal equal sided triangle (Atriangle = 
a

2
3

1/2
/4) and for the volume of the pyramid (Vpyr = Atrianglehpyr/3), The central side 

length a-value has to be translated into the hpyr-value of the pyramid with the aid 
of the characteristic β-angle values of the pyramids (β = 65. 7˚ for Berkovic  and 
35. 64˚ for cubecorner). 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref2
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref21
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t2
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref21
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref21
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref21
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref22
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#f3


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Recent Updates on Volume, Side-Area, and Force Direction of Berkovich and Cubecorner Indenters   

 
 

 

 
234 

 

Table 15.2. Influence of indenter volume and side-areas of the indenter pyramids according to Equations (13) and (14), as 
tested with the force-depth curves of Zerodur

®
 in Fig. 15.10 of [26] 

 

Force 
FN (mN) 

Berkovich 
h (µm)

a)
 

Cubecorner h 
(µm) 

Berkovich V 
(µm

3
) 

Cubecorner V 
(µm

3
) 

Berkovich 3A 
(µm

2
) 

Cubecorner 3A 
(µm

2
) 

100 0.959 2.0300 7.2011 7.2446 24.8016 18.5443 
200 1.380 2.9167 21.4580 21.4882 51.3570 39.0741 
300 1.718 3.6333 41.4048 41.5357 79.5954 59.4046 
400 1.974 4.1806 62.8046 63.2753 105.0838 78.6493 
500 2.221 4.6944 89.4531 89.5897 133.0267 99.1694 
600 2.449 5.1667 119.9268 119.4075 161.7407 120.1279 

a)
The final depths at 600 mN were 2.42769 µm for Berkovich and 5.15639 µm for cubecorner 

 

Table 15.3. Comparison of Berkovich and cubecorner indentations from published loading curves; the calculations are with 
the units of the k-values followed by transformation into mN and µm units and rounding from initially 10 significant figures 

 

n Material k1 
k2 

htrans onset 
(μm) 

Ftrans onset 
(μm) 

Wtransition 
(m μm/Δh) 

Data Source 

1 Zerodur 
Berkovich 

141.81   /μ 
3/2

 
189.24 

1.54678 248.2246 86.8650 Ceram Internat, 
Elsevier, 2016, 42, 
12740, Figure 10 2 Zerodur 

Cubecorner 
46.121   /μ 

3/2
 

62.230 
3.33355 250.1074 96.4875 

3 Fused SiO2 
Berkovich 

1.5289 uN/nm
3/2

 
1.8347 

0.09016 1.19808 0.22610 Hysitron Handbook 

4 Fused SiO2 
Cubecorner

a)
 

0.4480 μ /n 
3/2

 
0.5561 

0.18883 1.12375 0.23926 Int J Mater Res 2005 
96, 1226 

5 Na2O-Al2O3-SiO2 1.8868 μ /n 
3/2

 0.13679 3.10289 0.388391 J Amer Ceram Soc 
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n Material k1 
k2 

htrans onset 
(μm) 

Ftrans onset 
(μm) 

Wtransition 
(m μm/Δh) 

Data Source 

Glass Berkovich
b)

 2.2632 2018 101, 2930, Figure 
2(A) 6 Na2O-Al2O3-SiO2 

Glass Cubecorner 
0.4765 μ /n 

3/2
 

0.6119 
0.36145 3.08279 0.84159 

7 2C22 Steel stress-free, 
Berkovich 

45.814   /μ 
3/2

 
65.225 

0.92967 34.20895 14.4435 Procedia Engineering 
2011, 10, 3528, Figure 
1(b) 8 2C22 Steel stress-free, 

Cubecorner 
9.1998   /μ 

3/2
 

13.139 
2.38606 33.29274 11.35050 

9 Nickel 
Berkovich 

127.56   /μ 
3/2

 
167.96 

0.60051 52.75485 19.05449 Philosophical 
Magazine 2016, 96, 
3442 10 Nickel 

Cubecorner 
25.124   /μ 

3/2
 

31.417 
1.05640 26.24538 5.899987 

11 Ger aniμ  
Berkovich 

97.083   /μ 
3/2

 
128.58 

0.27330 12.53433 4.377296 Appl Phys Lett 2005, 
86, 131907 

12 Germanium 
Cubecorner

c)
 

29.085   /μ 
3/2

    

13 Cu60Zr30Ti10
d)

 
Berkovich 

2.1803 μ /n 
3/2

 
2.6791 

0.15718 4.01683 0.969275 Mater Sci Engin A 
2006, 430, 350 

14 Vitreloy-105
e)

 
Cubecorner 

29.652   /μ 
3/2

 
36.139 

2.53297 107.9909 28.29528 Phil Mag 2006, 86, 
5715-5728 

a)
Now calculated with all of the 475 data points; 

b)
sodium aluminosilicate glass; 

c)
the published cubecorner loading curve cannot be analyzed for k2 due to 

rough not repairable pop-in; 
d)
a second transition is at about 9 mN and 0.25 µm; 

e)
Zr41Ti14Cu12.5Ni10Be22.5. 
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Fig. 15.3. Perspective view on a 3D wire model of an inverted straight three-
sided pyramid without crossing lines. The triangles of the model are of 
course not distorted. The curve with a point shall indicate that there is 

actually a right angle at that site 

 
For obtaining the requested formula we have to consider that the equal sided 

basal triangle height (  triangle    3
   

  ) subdivides in the 1:2 ratio at the 

center of the triangle, so that the short part     triangle    3
   

6  is used for 

       3
   

6 p r . One isolates a and obtains    36      p r
   . By 

substitution of a
2
 into Atriangle one obtains  triangle  3  3

           p r
  and with 

   triangle p r 3  one obtains  p r  3
           p r

  (9). The volumes of Berkovich 

(β = 65. 7˚) calculate thus as (15.10) for Berkovich and (15.11) for cubecorner (β 
=35. 64˚). Fig. 15.3 facilitates the survey of the trigonometric steps. 
 

 p ra id  3
           p r

                                                                       (15.9) 

 

 Berkovic   . 647  6 p r
                                                                 ( 15.10) 

 

 cubecorner   . 66    4 p r
                                                              (15.11) 

 
Another point is the relation of the side-areas as a function of indentation depth 
that must be considered. The complete side-area 3Aside of the pyramids has not 
been used previously. We also determine their mathematical formula for 
checking how these depend on the tip angle. We use the mathematical formula 
for the areas of isosceles triangular side faces of the pyramid area that is  side  

  side   . As above we first determine   6       p r 3
    . For obtaining hside we 

use            6 side , isolate hside and substitute a twice to obtain after 
shortening out  side         p r       these factors for a and hside are in the 
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formula for Aside. This gives 3Aside for the Equations (15.12), or (15.13) and 
(15.14) with the numerical factors, for the complete inserted pyramidal side-
faces. 
 

                      
                                                              (15.12) 

 

                              
                                                       (15.13) 

  
3Acubecorner = 4.0005hcubecorner

2
                                                          (15.14) 

 
We check now the experimental loading data of isotropic Zerodur

®
 with great 

detail (calculation of the irrational numbers with 10 digits before reasonable 
rounding) in order to tell whether the inevitable tip rounding at the apex of sharp 
commercial quality indenters (radii about 50 nm for cubecorner and 100 nm for 
Berkovich) can be neglected, due to the always executed necessary axis-cut 
corrections. They can be neglected with this excellent published data. Clearly, 
blunt or broken indenters will not provide useful data; and simulated loading 
curves can be excluded when the calculated displaced volumes are not equal 
between the different pyramids or cones at the same force (but see Section 3.5). 
 
The regression data as calculated from the load-depth curves in Fig. 10 of [26] 
for the calculation of the ceramic Zerodur properties are   - -Berkovic  

                    - -Berkovic                    and   - -cubecorner  

                 ,   - -cubecorner                    The index 1 is before 

phase-transition, the index 2 after phase transition. The phase-transition onset is 
at 248.2246 mN for Berkovich and 250.1074 mN for cubecorner, which is 
practically the same value. The normalized transition energies are for Berkovich 
86.8650   µ /Δh, and for cubecorner they are 96.4875   µ /Δh. 

 
The corrections for the axis cuts Fa-1 and Fa-2 (15.2), which also include tip 
rounding, influence the calculation results considerably. They must therefore also 
be reported with the complete regression line equations. 
 
The indentation onto fused quartz (n3 - n4) with Berkovich (µN, nm) gives the 

regression lines                       and                        The 
transition onset is at 1198.0844 µN load. The cubecorner (µN, nm) [27] gives by 
calculation with all of the 475 data points from the loading curve the regression 

lines                       and                        The transition 
onset is at 1123.7482 µN load. 
 
For sodium aluminosilicate glass (n5 - n6) exist indentations with Berkovich and 
cubecorner in the same paper [22]. The published loading curve (Raw Glass-Air 
side) (µN, nm), as indented with Berkovich give the regression line    -  

                   and   -                    with a transition on-set at 

3102.8851 µN load. The loading curve (Raw glass-Air side) with cubecorner (only 
usable up to 5000 of 9000 µN) gives the following regression lines:     
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                  and                      and the transition onset is at 
2605.9316 µN load. 
 
The Indentation of stress-free steel 2C22 (n7 - n8) has also been studied with 
both indenters (mN, µm) [28]. The published loading curve for Berkovich gives 

the regression lines   -                    and   -                    

mN, and the one with cubecorner   -                    and   -  

                  mN. 
 
The indentation of nickel (n9 - n10) from [29] gives the regression lines from the 

published loading curve with Berkovich   -                    and   -  

                  mN, and the one from cubecorner   -             

       and   -                   mN. 

 
The indentation onto Germanium (n11 - n12) [30] gives the regression lines for 

Berkovich   -                    and   -                    mN. The 

k2-value with Berkovich could not be reasonably determined from the published 
loading curve. 
 
The loading curve (µN, nm) for the bulk of the Cu60Zr30Ti10 alloy (n13) [31] gives 

the regression lines   -                    and   -                   . 

The transition onset is at 4016.830 mN, and the endothermic transition energy is 
967.275 µ n /Δh. A further transition onset follows at about 9000 µN load. 
 
The loading curve of vitreloy (mN, µm) with the cubecorner (n14) [32] gives the 

regression lines   -                    and   -                   . 

 
Table 15.3 collects the results primarily from glassy ceramics (n1 - n6) for which 
both Berkovich and cubecorner indentations have been published. For 
comparison it also contains 2C22 steel alloy (n7 - n8) with an intermediate 
behavior, nickel (n9 - n10) as a crystalline metal, germanium (n11 - n12) with 
partly unsuitable data, and the metallic glasses (n13) and (n14) with “free 
volu e” pores or shear bands formation even though these are only indented 
with one indented type, each. For glassy vitreloy (n14), here with the Δh 
normalization, we point to the possibility of partial crystallization and shear 
bands, as formed on the surface. It is one of the entropic metallic glasses with 
extremely high values of phase transition onset force and phase-transition 
energy. The examples (n13) and (n14) are necessary for pointing out that not all 
super-cooled amorphous materials solidify without pores or partial crystallization 
that allow for some pile-up. Such complications must also be taken care of. 
Fortunately, these features can now be easily determined by checking whether or 
not such material exhibits pile-up upon indentation or not. 
 
The algebraically calculated mechanical results from loading curves of primarily 
glassy ceramics in Table 15.3 (n1 - n6) confirm the unfitted calculations from the 
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regression lines of FN vs h
3/2

 plots (15.1) for final applied forces from 2.5 mN 
(fused quartz) up to 600 mN (Zerodur

®
) or 500 mN (vitreloy-105). This rests on 

the now available volumes of Berkovich and cubecorner indenters as a function 
of the penetration depth. All phase-transitions in Table 15.3 are endothermic and 
pile-up is not possible in the isotropic materials (n1 - n6): they have no cleavage 
planes or channels for  aterials’ slide. The crystalline porous alloy (n13) is an 
evident exception in this respect, due to pile-up formation via the pores. The 
2C22 steel has still the very close correspondence with the phase-transition 
onset of both indenters. 
 
Importantly, the earlier claimed 1 to 3 ratio of displaced material between 
Berkovich and cube corner ([21,24]) is clearly disproved. Despite the same 
displaced volume, the ratios of the physical hardness k1-Berkovich/k1-cubecorner vary 
for the different glassy ceramics between 3.07 and 4.99 in Table 15.3 (n1 - n6). 
For crystalline nickel it is 5.09. It is thus not constant and cannot be related to the 
tanβ ratio of the indenters (3.0705), due to the different force directions and force 

powers. The phase-transition onset depths of the glassy ceramics vary from 
0.090 or 0.189 µm of fused quartz to 0.137 or 0.362 µm of sodium 
aluminosilicate. But due to the displaced volume equality, the phase-transition 
onset forces are for these ceramics equal between Berkovich and cubecorner. 
The results with the glassy ceramics are particularly remarkable when the strong 
variations of the normalized phase-transition work from 0.23 - 96.5   µ /Δh are 
considered. The comparably very low value of fused quartz in connection with 
the low transition depth is a serious but mostly still not realized burden of its use 
as calibration standard for nanoindentations. Actually, it should only be used at 
forces below 1 mN for correct calibrations with Berkovich indenter and the ISO 
14577 standard requires urgent revision. Conversely, Zerodur would be qualified 
as an indentation standard by its very high normalized transition work of 87 or 
96.5   µ /Δh for resisting high mechanical and apparently also thermal stress 
in Ceran

®
 cooking plates. The super-cooled 2C22 steel is with its 14.4   µ /Δh 

far away from that. Further published experimental curves are as yet missing. It 
is an interesting consequence of the energy conservation law and certainly an 
important tool for the ceramics industry. 
 
The very closely identical values for the Berkovich and cubecorner volumes in 
Table 15.2 indicate that both indenters behave in the same way with the isotropic 
glassy ceramics that does not allow for slide of material that would require 
corrections for Equations (15.10) and (15.11). Corrections for tip rounding of 
sharp indenters and the compression of diamond indenters are also not 
necessary. These are not part of the mathematical Equations (15.9), (15.10), and 
(15.11). And they are at least very similar for both indenters. Our results are very 
close to the mathematical precision, because of the excellent mechanical 
qualities of the ceramics in question (e. g. Zerodur

®
). Any slight deviations are 

the result of low tip-angle precision and lack of the original data set for the data 
evaluation. We deal here with deep indentations and the tested materials are not 
super-hard. The sharp tip apex will stay sharp and its inevitable rounding is 
corrected together with the surface effects by Fa in (15.2). However, when 
indenting super-hard materials, the low elastic compliance of diamond would 
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require correction and the then increasing tip bluntness would have to be 
controlled over and over again with tapping mode AFM (but please not with the 
iterative penetration onto fused quartz). 
 
We must now discuss the reasons for the differences between Berkovich and 
cubecorner indentations. Unlike equal displaced volumes V, the areas 3Aside of 
the Berkovich are about 1.3 times larger than the areas 3Aside of the cubecorner 
at the same force (Table 15.2), despite the much deeper penetration of the latter. 
The created polymorph cover upon phase transition will therefore be broader at 
the cubecorner side-areas than at the Berkovich side-areas at the same force. 
The different side face areas (15.13) and (15.14) do not change the phase-
transition onset forces but they are certainly part of the differences between the 
transition works, as performed by Berkovich or cubecorner indentation. But the 
normalized phase-transition energy (15.8) values do not precisely correspond 
after division by the respective pyramidal surfaces 3Aside (15.13) and (15.14). The 
smaller transition energy value with the Berkovich indenter at the isotropic 
ceramics is thus not only due to its larger surface at the same indentation force. 
The cubecorner has to compress the same amount of the transformed polymorph 
from its smaller 3Aside-area (Table 15.2) forming a broader cover over a much 
longer distance. And the polymorph is mostly less compliant than the bulk. Thus, 
the cubecorner has to add more compression energy for the same amount of 
transformed material to the endothermic phase-transition energy than the 
Berkovich. But this side-area influence cannot be the only reason for these 
differences of the Wtansition values between the different indenters. 
 
Perhaps more important than the side-area influence, is the force direction 
influence. The three-sided pyramids are three-sided “wedges” with the angle β 
(Fig. 15.3). The sideward force component Fside with influence to the phase-
transition onset calculates with the simple wedge-force formula Fside = FN-

onset/2sinβ. For the phase-transition onset of e. g. Zerodur with Berkovich the 
direction of this force component is at the angle of 90 − 65.27 =  4.73˚. One 
calculates  side-Berkovic                                  For the cube-

corner phase-transition onset the direction of that force component is 90 − 
35.246 = 54.754˚. One calculates  side-cubecorner                      

            (1.59 times stronger than Berkovich). That is in both cases for 

every one of the 3 side-faces. At the phase-transition onset the cubecorner is 
roughly twice as deep as the Berkovich and the cube corner adds more force, 
which increases the endothermic transition energy over the one from the 
Berkovich. That is indeed observed for the glassy ceramics. The force direction is 
by far steeper for Berkovich and it compresses further down with lower resulting 
force than the cubecorner that compresses in a flatter way with higher resulting 
force. The graphical analysis provides  3.7˚ for Berkovich and  5.5˚ for 
cubecorner for the direction of the resulting force with respect to the indenter 
central line from the force parallelogram. 
 
Importantly, its shallower compression direction is now also the straightforward 
explanation for the more efficient cubecorner indentations for fracture toughness 
determinations via cracks, when compared to Berkovich. These observations and 
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explanations clearly disprove the claim of [24] with compression of material at the 
apex of the cubecorner. Surprisingly, recent authors did not consider the force 
directional action when constructing their theories and simulations that are thus 
in error. Also the equal phase-transition onset forces for glassy ceramics and the 
different transition energies with the higher value from the cubecorner and the 
lower physical hardness k (15.1), (15.2) of the cubecorner are so reliably 
explained and comprehended. It’s the force and the force direction from 
indenters that counts. 
 
There are no problems with slide compliance in glassy ceramics. We note that all 
of these glasses indent without pile-up. In the absence of pile-up the phase-
transition force must be equal for both indenters, and the quality of such 
indentations can be checked with this fact. 
 
The novel mathematical insights are used without any correction necessity for 
the unprecedented facts and applications for glassy ceramics in Table 15.3 (n1 - 
n6). These basic insights are also valid for the further materials in Table 15.3 (n7 
- n8), but further influences require corrections that are not included in the basic 
mathematical treatment. Pile-up and internal slide along cleavage planes would 
require their being reported, volumetrically measured, and crystallographically 
analyzed. Nothing of that is known yet, so that we need more research for 
developing techniques for the necessary corrections. A first partial solution is 
presented in Section 3.5.2. The steel in Table 15.3 (n7 - n8) is a borderline case, 
where the phase-transition onset force is almost the same for Berkovich and 
cubecorner. But the phase-transition energy value is now larger for Berkovich 
than for cubecorner. The differences with the ceramic examples increase 
enormously with anisotropic crystalline nickel with slide effects in Table 15.3 (n9 - 
n10). It provides a twofold difference in the phase-transition onset force between 
the indenters. Furthermore, the phase-transition energy is more than 3 times 
larger for Berkovich than for cube corner in that case. For an explanation one 
should at first know the different pile-up volumes for both indenters at the same 
force. Further difficulties with pile-up are discussed in Section 3.5.1. There is an 
unfortunate lack of comparative loading curves in that respect. 
 
Before the discussion of pile-up in Section 3.5 we have to take care of reliable 
experimental data that must not be simulating fitted ones. The mathematical 
calculation of indenter volumes reveals unexpected further common errors by 
treating the pyramidal indenters as pseudo-cones. Unfortunately, equal base-
area cones are not equivalent to the pyramids. 
 

15. 3.4 The Undue Treatment of Pyramids as Pseudo-Cones 
 
The now available volumes and side-areas of pyramidal indenters open new 
questions for the validity of the widespread use of pseudo-cones with equal 
base-area for the pyramids. ISO 14577 using [8], and so textbooks, and the so 
guided indentation research, including industrial technical applications, still 
believe in indentation ISO hardness H. Unfortunately, that relies on “projected 
area”, or in refined form “contact area”. The latter is obtained via two iterations 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref21
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#t3
https://www.scirp.org/journal/paperinformation.aspx?paperid=113407#ref5


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Recent Updates on Volume, Side-Area, and Force Direction of Berkovich and Cubecorner Indenters   

 
 

 

 
242 

 

with 3 and then with 8 free parameters. Furthermore, it became common practice 
to treat the indenting pyramids as pseudo-cones with equal basal-area. This 
allows for easier calculations and huge savings in computer time for iterating 
simulations (e.g. [25] and [33] ). The (half) opening angles of the pseudo-cones 
had been so calculated that the projected indentation area is indeed the same as 
with the corresponding pyramids. These almost always used angles are 7 . 996˚ 
for Berkovich and 4 .  ˚ for cubecorner. But do pseudo-cone pyramids really 
penetrate to the same depths as pyramids? The previous Section 15.3.3 gives 
the answer and that is no! These so-called “effective” or “equivalent” models for 
pyramids are in fact (for quantification see Chapter 16) pyramidal phantoms. 
Their sideward force component direction angles are 90 − 70.2996 =  9.7  4˚ 
(instead of  4.73˚) and 90 − 42.28 = 47.7 ˚ (instead of 54.736˚) for the Berkovich 
phantom and for the cubecorner phantom, respectively. This leads to errors in 
ISO-hardness and ISO-elastic modulus. Both pyramidal phantoms (Chapter 16) 
would give considerably flatter force direction and force power than the 
respective pyramids at the same applied force FN. The resulting pseudo-cone 

phantom errors of the numerical data are huge. One may compare the depth 
differences at 600 mN load onto Zerodur (Table 15.3) between Berkovich and 
cubecorner of 2.73 µm, which depends on about 3 ˚ angle difference of the 
sideward force angle contribution. Here we have 5˚ or 7˚ smaller angles than the 
pyramids, which influences both depth and resulting force, as calculated via 
(15.15) and (15.16) at the same applied force FN. Clearly, these “equivalent 
cones” are not at all equivalent to the pyramids. Our evident volume, side-area, 
and directional force effects have never been considered. The false use of the 
pseudo-cone phantoms has therefore never been challenged before. 
 
The mathematical volume and side-area of the pseudo-cone phantoms as a 
function of depth calculates again straightforwardly. We use the corresponding 
half-opening angles α = 7 . 996˚ and 4 .  ˚ for Berkovich and cubecorner 

phantomes, respectively. For the cone volume as a function of depth one starts 
with Vcone = πr

2
hcone /3 and substitutes the basal r by hcone via tanα = r/hcone) to 

obtain without difficulty Equation (15.15). For the side-area of cones one uses 
Aside= πrs, where s is the side length. With sinα = hcone/r and tanα = r/h followed 
by substitutions of r Equation (15.16) is obtained. 
 

 pseudocone         cone
                                                                 (15.15) 

 
 pseudocone         cone

 sin                                                           (15.16) 

 
Apparently, nobody figured out yet that such “equivalent cones” have not the 
same volume at the same force and angle as the pyramids. We test here with the 
pseudo-cone phantom of 7 . 996˚ [34] for Berkovich. For cubecorner we test 
with the well-known old 4 .  ˚ but not with new 4 .   ˚, as claimed in [25] (for 
avoiding an error of 16.2%). The numerical factors for Vpseudocone in (15.15) for 
mimicking Berkovich are 8.168037 and for mimicking cubecorner (we test with 
the 42,   ˚ value) it is 0.865836. These numerical volume factors are within at 
most 0.04 % indistinguishable between pyramids and pseudo-cones. However, 
the respective volumes are different after their multiplication with the depth

3
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values that are smaller with the pseudo-cones due to the lower depths (cf 
Berkovich and cubecorner in Chapter 16). 
 
The numerical factors of Apseudocone (15.16) are 26.02765 for the Berkovich 

phantom and 3.86100 for the cubecorner phantom. The phantom values are thus 
smaller by 3.5% and by 14.2% respectively than those of the pyramids in 
Equation (15.13) and (15.14). This would after multiplication with the smaller 
depths

2
 obtain smaller expected areas than with the pyramidal indents. 

Therefore, the equalization of pseudo-cone with pyramid and all simulations on 
that basis are in severe error also for that reason. The simulations of [25] are 
cited above. These facts are still not recognized by the simulation groups from 
[24,29,33,34], and many others. 
 
The incorrect use of pseudo-cone pyramids adds to the further flaws of published 
experimental indentations that are now easily recognized by novel straight-
forward testing. They appear often “influenced” by the hard-to-understand claims 
of the Oliver-Pharr group [21]. For example, further undue approaches argued 
with images of “broader” Berkovich coverage and “s aller” cubecorner coverage 
with complying material (actually after phase-transition onset it is polymorph). 
Their pressure distribution images [24] are more than questionable. Such claims 
are totally misleading and so are the extremely complicated discussions in that 
paper. 
There were no reasons for challenging the pseudo cone phantom claims in 2017 
[35-37]. The unexpected new results exclude the use of the so-called “equivalent 
cone angles” from that time and we apologize for their then bona fide use. All 
applications and conclusions are still correct in these 3 publications. Only the 
numerical values that depend on the αcone angles of the pseudo-cone pyramids 
cones require correction (see Chapter 16). 
 

15.3.5 The Pile-Up Influence 
 
Pile-up upon indentation onto anisotropic nickel could not be corrected in Section 
15.3.3, Table 15.3 (n9 - n10) due to pile-up formation. It is therefore now 
important to discuss the pile-up formations and effects. Anisotropic crystals with 
cleavage-planes and channels allow for sliding of materials along these and if 
they end at the indented surface, it is pile-up. Crystals are therefore the more 
compliant the better the force direction angle corresponds with the cleavage 
plane directions. That explains the anisotropy of indentation results upon 
indentations onto different crystallographic faces. Such sliding costs penetration 
depth that must be corrected for the penetration volume and it differs from 
material to material. Not all cleavage planes and channels end at the indented 
surface. There is also hidden sliding, and there are larger and smaller cleavage 
planes and channels with different sliding qualities in various directions. Sliding is 
also responsible for the differences between Berkovich and cubecorner 
indentations. This complicates the issue and requires detailed crystallography. 
The detailed crystallographic analysis of slide plane influences on not iterated 
physical hardness, phase-transition onset, and its energy has already been 
published for silicon onto (001) and (100), or α-iron onto (100), (110), and (111), 
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or CaCO3 (three faces) in [19], or in the case of α-quartz onto 4 different faces. 
The anisotropy is explained with differently orientated channels in [15]. 
Crystallographic analysis of their 3D interlocking in crystals is important. One 
must detect the face of the crystal opposite to the skew indenter face. There 
might be channels that are too small for sliding but these facilitate the compliance 
and also induce anisotropy [15]. Some of these faces and channels end at the 
indented surface, others at the side faces. It might be even possible to find 
indentation directions on surfaces without exit from these, and sliding might end 
within the crystal. Furthermore, micro-porous materials will also produce pile-up. 
There is no need to consider sink-in [1]. The depth of indentations is always 
measured from the height of the initial flat surface. And sharp pyramids like 
Berkovich or cubecorner indenters penetrate immediately upon contact. Their tip 
rounding can be neglected at sufficiently deep penetrations. Also initial surface 
effects are cut off by taking care of the axis cut in FN vs h

3/2
 plots [2] (Section 2). 

 
15.3.5.1 The Common Interpretation of Pile-Up with Iterated Mechanical 

Properties 
 

It is clear that the pile-up and hidden slide volume has to be added to the 
inverted pyramid volume, so that the mathematical depth requires correction for 
it. But the common ISO 14577 and ASTM guided discussion of the pile-up 
phenomenon for anisotropic materials does not consider cleavage planes and 
channels. It claims friction at the indenter instead. This must again be 
challenged, as it is not intelligible. The published ISO 14577 and ASTM guided 
publications claim that “no significant difference occurs between cubecorner and 
Berkovich  easure ents”. This has been “tested” for iterated ISO-modulus Er 
and also for iterated ISO-hardness H with the pretended claim: “no fundamental 
difference is observed” [38]. Unfortunately, no experimental loading curves were 
supplied for obtaining not iterated data. The published data for 8 very different 
materials are within experimental error, on the basis of the 3 + 8 free parameters 
in the two consecutive iterations. This common ISO-ASTM procedure is still 
commonly used. Unfortunately, these claims would seem to include that 
numerous other mechanical qualities might also be without “significant 
difference”. Also phrases like “Friction does not significantly influence the 
simulation of the load-displacement response in indentations” [39] do not deny 
the challenged friction approach. And phrases like “Pile-up occurs due to 
isovolumetric plastic flow parallel to the indenter surface when the strain is 
concentrated directly below the indenter” [40] are incorrect. And so are the 
strange theories that are connected with it. 
 
The averaged pile-up height around the indentation in [41] is obtained by AFM 
measurements of the indented surface, but this does not include the volume of 
the pile-up. Pile-up falsifies the ISO hardness H and ISO modulus Er enormously 
(H up to 60% error, sometimes even 80% error, and Er up to 30% error), because 
the “contact depth is falsified”. It is well-known, but most colleagues live with it. 
For example [42] complains it. But ISO-H and ISO-Er values are nevertheless 
used in its finite element simulations. The current argumentation includes hf/hmax 
ratio (hf for hmax + hpile-up), strain hardening coefficient n and E/σy, averaged pile-
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up heights (instead of pile-up volumes), “indentation size effects” (instead of 
phase-transitions), and work hardening. All of that is published instead of 
considering the papers [1] and [2]. The contents of these were also long before 
discussed in numerous worldwide conferences. 
Unfortunately, the faulty simulations of [42] stimulated the belief in even more 
extended simulations and iterations with finite element analysis. These include in 
their calculation not less than the complexity of hf/hmax ratios, ISO-hardness H, 
ISO-modulus Er, contact stiffness S, indentation size effect (ISE), pile-up height, 

strain hardening exponent, strain hardening coefficient, stress and strain, yield 
point, yield strain, yield stress, Poisson’s ratio, equivalent strain energy elastic 
and elastoplastic, tip angle, cone model of Berkovich, deformed volume with 
Jo nson’s cavity model, total indentation work, and friction coefficient with 
numerous fitting constants [40]. Numerous of these building blocs are iterated 
ones. These more than complicated techniques are included in “inverse 
estimation iteration tec niques”. 
 
Enormous iterations are used for describing the pile-up topography with an 
algorithm, but still not for the pile-up volume. Furthermore, there are different 
contradicting approaches and simulations. None of them help for understanding 
the pile-up events. And none of them invoke cleavage planes and channels of 
the materials. Such simulations did not distinguish between isotropic and 
anisotropic solids. Thus, all of these enormous diverting simulations and 
iterations are obsolete. 
 
15.3.5.2 The Solution with Pile-Up Volume along Cleavage Planes 
 
Fortunately, the physical hardness k [FN/h

3/2
] of pyramidal and conical (with 

cones) indentation, which is in accordance with the energy conservation rule [1], 
[2], is not invalidated by any pile-up. The latter is however influencing the 
steepness of the straight regression line. The failure of the simulations as 
challenged in Section 15.3.5.1 derives from their inability to take care of cleavage 
planes and channels, of directional force effects, and of phase-transitions. All 
pile-up considerations must additionally care for “free volu e” pores, which also 
enable slide possibilities upon stress. 
 
We must now more detailed discuss the reasons for pile-up. Cleavage-planes 
and or channels for the sliding of locally stressed materials are always present in 
the anisotropic crystalline matter. Slide possibilities along cleavage planes and 
channels must always be considered. They are revealed from proper 
crystallographic analysis and can facilitate the crystals compliance. Ample 
examples with crystal packing images are available in [15,19], and [43]. 
 
In order to prove the slide of material along the cleavage planes for pile-up, we 
looked for a suitable system with only one type of parallel cleavage planes that 
can be checked from different directions. And we determined the volume and 
shape of the pile-up. The organic molecule thiohydantoin crystallizes with parallel 
not interlocked molecular sheets in space group (P21/c) and melts at  3 ˚C. It is 
a particularly suitable example with 66˚ steep unimolecular sheets that have the 
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single cleavage plane direction for slide between them. The sheets and thus the 
parallel cleavage planes end on the (110) surface. 
 
The model in Fig. 15.4 shows the different indentations with a cube corner 
indenter upon ramp scratching (indentation with increasing force along a 
predefined horizontal distance) in direction (a), (b), (c), and (d) from 0 - 400 µN 
load over a distance of 10 µm. The pile-up can now be freely selected from none, 
equal, and equal with perhaps slightly more than equal, as compared with the 
depression volume. The last possibility would mean that some broken edges 
added to the pile-up. The impressive interactive color images are freely available 
in [44]. 
 
The scratch against the sloping (dir. c) (Fig. 15.4) provides almost no pile-up, 
because the sheets are pushed down. The scratch with the sloping (dir. a) 
provides pile-up to both sides with a pile-up volume equal or perhaps slightly 
larger than the depression volume. Due to overlapping pile-up it does not leave 
well defined reference edges and corners. The volume can thus not precisely be 
quantified with AFM and the bearing analysis routine [11,12] in that case. Most 
interesting is the scratch along the s eets’ direction. It depends on the orientation 
of the crystal whether all of the pile-up occurs to the left (dir. b) or upon turn of 
the crystal by    ˚ to the right side (dir. d) of the scratch direction onto the (110) 
face. In these cases, the pile-up volumes are equal to the depression volume. 
For example, the ratio for the measured dir. b direction is 2.661 µm

3
 (pile-up) to 

2.588 µm
3
 (depression). No pileup is formed by normal indentation onto the (10-

2) faces left or right of the crystal (Fig. 15.4). The sliding migrations from the 
penetrated sheets cannot exit the crystal in these cases. Such internal slide is 
“lost pile-up” that also detracts from the mathematical depth and volume values. 

 

 
 

Fig. 15.4. Two geometric models at 0˚ and  80˚ orientation of the 66˚ skew 
monolayer sheet packing of thiohydantoin, indicating the four different 

indentation orientations for the ramp scratches with cubecorner 
indentation; the model is redrawn in part from [44] 
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This model is fundamental and convincing due to only one skew cleavage plane 
direction between unimolecular sheets. Further examples for pile-up to the right 
or to the left hand side, just by turning the crystals by    ˚, are known from [44] 
and [45] for anthracene or for tetraphenylethene with their skew cleavage plane 
directions. These examples rest on their proper crystal structure analyses. 
 
The situation is more complicated for crystals with more than one type of 
cleavage or channel directions. All of them require identification and indentation 
in the respective directions. Such as yet missing studies with crystalline materials 
(except from the present autor in the Chapters 5, 7, 8) will open the possibility to 
develop the corrections of the undeniable mathematical formulas for indenter 
volume and side-face. Practical applications will become unavoidable with that 
endeavor. 
 
It is essential to always calculate the pile-up volumes (not only the average 
height) with the bearing analysis routine [11,12] on the basis of the plane through 
the respective corners. Unfortunately, such volume calculations are as yet not 
performed at the expense of only image topologies with AFM or of their 
simulation by using finite element calculation routines. Our striking results with 
thiohydantoin, anthracene, and tetraphenylethene disprove the validity of 
conclusions from pile-up height simulations. It’s the volume that counts! 
 

In fact, most crystalline materials of all types are much more complicated than 
thiohydantoin, anthracene, and tetraphenylethene due to numerous cleavage 
planes in different directions for sliding materials. All of these must be studied by 
indentations onto various faces to experimentally check their efficiency (angle 
and width). It might also be possible to find directions without pile-up. Hidden 
sliding occurs when cleavage planes or sufficiently wide channels cross the 
indentation direction. 
 

A special case is remote pile-up about 50 to 200 µm from the indentation center. 
The Vickers impression onto crown glass at 50 N load is an example where 
these are symmetrically in line at right angle [26]. Clearly, there is materials slide 
along submicron cracks, as formed upon stress relief. In the case of flint glass 
such submicron cracks are unsymmetrical and so are the long-range pile-up 
features. Both glasses are amorphous and brittle though. 
 

We remind here another long-range crack initiation and completion with the 
detection of the two-step nucleation in NaCl that happened upon depth-sensing 
Vickers indentation with the polymorph after its 5th phase-transition at 24.43 N 
load [20]. At 28.5 N load and 6.1 mm (!) from the indentation center occurred a 
mini-thin crack trace. It was detected at 5000X magnification with the 3D digital 
microscope. This tiny micro-crack nucleated a 5 µm short pre-crack with 1.68 µm 
width. Upon the further load the crack resumed from the continued micro-crack 
and completed without pile-up, while the load was continuously increased. At 
29.8 N load the macroscopic crack was 8.5 µm wide. At 50 N load after 5.8 mm 
length the crack was 11.2 µm wide and 3.12 µm deep at the exit from the sample 
end. Clearly, long-range release of the stress due to the compacting imposed by 
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the indenter can be released along micro-cracks. Depending on the material 
there can be crack nucleation (crystal) or distant pile-up (glass). 
 

Long-range pile-up is also possible with porous materials (e. g. the metallic glass 
Cu60Zr30Ti10 with pores in Table 15.3 (n13). Isotropic materials like Zerodur or 
fused quartz help themselves by phase transition with polymorphs around the 
indenter. 
The compression of the diamond indenter that is not corrected for, does not 
visibly affect the use of (15.9), as shown by the results of Table 15.3. Also the 
amorphous to amorphous phase-transitions (from floppy to rigid [4]) do not affect 
the results. But in case of pile-up we do not know yet. But see Chapter 16. Again, 
phase transitions are not seen in FN vs h loading curves but only in there-from 
calculated FN vs h

3/2
 plots. 

 
All of the here presented unprecedented facts can not be recognized by fitting 
simulations. Unfortunately, they are thus unthinkable by the common ISO 14577-
ASTM standards that are still confined to the Oliver-Pharr iterations of 1992. And 
these are not obeying the energy conservation law (see [1] [2] ). 
 
Further comparisons of Berkovich and cubecorner indentations onto crystalline 
materials with forces well beyond the phase-transition onset are badly required. 
 

15.4 CONCLUSIONS 
 
The consideration of volume, side-area, and resulting force direction of pyramidal 
or conical indenters straightforwardly replaces numerous incorrect common 
dogmas with easy self-evident unprecedented cognition. This paper describes 
novelties from the mathematical treatment of indentations in great detail, so that 
it can be easily reproduced. Poor experimental data that do not give straight line 
FN vs h

3/2
 plots or fitted false linear FN vs h

2
 ones can be and must be excluded 

from consideration. Also, instrumental miscalibration, or denial of phase-
transitions from [8] is still falsifying all of the 6 common calibration standards as 
reveled in [15]. Incredibly, the long-revealed phase transitions from all of them 
are still disregarded in the ISO 14577-ASTM standards! ISO-H and ISO-Er are 
unphysical and thus very dangerous characterizations of technical materials. 
Only undeniable calculation rules characterize phase transition onsets (depth 
and force) and transition energies. The advanced normalization of phase-
transition energies per Δh = (hpolymorph − honset) allows for mathematical 
comparison of Berkovich and cubecorner energies. The reliability of the precise 
calculations has been shown. They do not increase experimental errors by 
rounding errors. 
 
Isotropic ceramics proceed without complications. They are particularly useful for 
understanding the differences between pyramidal or conical indentations. The 
formulas for the volumes, side-areas for pyramids and for cones as functions of 
penetration depth, and the angle dependent force directions are straightforwardly 
deduced and used. The sidewise wedge-type force of the indented cubecorner is 
1.59 times stronger than the one of the Berkovich indenter at the same applied 
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force. Thus, cubecorner with higher force, flatter resulting force direction, and 
lower side-area is better for fracture toughness determinations than Berkovich at 
the same applied force. 
 
The undeniable mathematical formulas are experimentally realized for ceramics 
lacking pile-up. The previous widely acknowledged claims of 3-times larger 
displaced volume for cubecorner as compared to Berkovich at the same 
indentation force is mathematically and physically disproved without using any 
iteration. 
 
The very widespread mimicking of pyramids with “equivalent” cone angles for the 
same projected indentation area is in severe error (depth, force, angle, hardness, 
etc) and must be urgently cancelled (see Chapter 16). The straightforward 
consideration of basic physics and mathematics identifies the chimera. 
 
The occurrence of pile-up with anisotropic crystalline material creates indentation 
volumes with different amounts for Berkovich and cubecorner. The pile-up 
requires a completely new understanding. The previous view of pileup claiming 
friction of indenter with material and the unintelligible nebulous claims of 
materials “slip” are straightforwardly rejected. Both pile-up to the surface and 
hidden “pile-up” within the materials use cleavage planes or channels or cracks 
for sliding under the mechanical stress. Several of these paths in different 
directions and with different widths produce different results on different faces 
(anisotropy) and with different indenters (force direction). That is demonstrated 
using the new insights from this paper and by stressing the crystallographic 
techniques. Pile-up is definitely not produced by friction with the indenter. The 
non-appreciation of the crystallographic facts by the ISO 14577-ASTM indenter 
community led to extremely complicated iterative worthless simulations that are 
not helpful for materials mechanics. Iterative pile-up simulations are extremely 
dangerous when applied to technical materials. These facts are experimentally 
confirmed with indentations including pile-up volume measurement. Pile-up 
management has been exemplified using skew single cleavage plane 
orientations in crystals. 
 
The new insights from the indenter volume and side-area formulas have 
numerous practical applications. The arithmetic equations are valid both for 
isotropic and for anisotropic materials, covering physical hardness, initial surface 
effects, and phase-transition-onsets, -forces, and -energies. The comparison of 
Berkovich and cubecorner indenters at the same force has the physical 
indentation hardness (mN/µm

3/2
) always smaller with the cubecorner, due to the 

deeper penetration. Only the ratio variations cannot be judged without further 
experimental data. 
 
For isotropic materials the necessary phase-transition onset forces are equal for 
Berkovich and cubecorner, but the phase-transition energies are larger for the 
cubecorner due to its smaller β-angle (center line to side face) with flatter 
direction of the higher resulting force from the smaller side-area. For anisotropic 
materials the comparison of the different indenters is less predictable, because 
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pile-up and internal sliding volume has to be added to the impression volume, 
and the applied force to depth ratio is decreased. Different resulting forces meet 
the existing cleavage planes and channels at a different angle. Much more 
experimental research is required for finding appropriate predictive rules. The 
necessity to measure any pile-up volume (not only AFM topography) and to 
reveal cleavage planes, channels, and pores is stressed. 
 
The previous errors and the ones from non-consideration of phase-transitions 
must and can be corrected with the novel insights from this publication. But there 
is presently a lack of comparative indentions with different indenters onto 
crystalline materials with applied forces beyond their phase-transition onsets. 
Further research on these lines will help for a safer daily life. 
 

15.5 OUTLOOK 
 

The present author asked ISO officials for early revision of ISO 14577, but that 
takes time for various non-mathematical reasons. 
 
The unprecedented use of volume, side area, and force direction of pyramidal 
and conical indentations open numerous unexpected fields of research and 
unexplored applications. The background is undeniable calculation rules, but 
never simulative fitting of experimental data on the basis of incredibly difficult 
“t eories”, which still violate the energy conservation law from the beginning. 
 
The here described first novel results require further development with new 
experiments and development of computer programs beyond the common 
Excel

®
 features. Fast data calculation in huge comparable indentation series will 

enable the development of technical materials with much better and physically 
correct mechanical properties. The data validity checks remain with the FN vs h

3/2
 

plot. Examples are improved light alloys with systematically changing 
compositions for much better mechanical properties, particularly in view of 
phase-transition unsteadiness under load. 
 
The indentation science and the involved industry must try to discard iterative 
simulations and try to correct the characterization of technical materials. It must 
no longer trust in unphysical though still enforcing ISO 14577-ASTM hardness 
and modulus with their numerous there from deduced and perpetuated 
unphysical materials parameters. We remind here the broken propellers-blades 
in front of the turbines hitting the fuselage of airliners, and also the hundreds of 
grounded airliners since 2019 with cracks at the fuselage, including cracks even 
at the pickle forks between wings and fuselage, most likely due to constructions 
with TiAlV alloy. And there were still several catastrophic airliner accidents. The 
TiAlX alloys exhibit comparably low phase-transition onset forces and energies, 
forming polymorph interfaces as sites for crack nucleation upon mechanical 
stress. Considerably improved alloys have to be immediately developed on the 
physical and mathematical basis, not only for the aviation industry. 
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Furthermore, unsolved problems promise unexpected new advancements and 
applications. The mathematical comparison of physical hardness (k-value FN/h

3/2
) 

between different indenters requires further investigations with new comparative 
indentation experiments. The angle β (Fig. 15.3) must certainly play an important 

role in that endeavor. Correction of the indentation volume with the pile-up 
volumes on all different materials surfaces can be helpful for structural decisions. 
Such studies promise important new materials properties that are not at all 
available by iterations. 
 
It is to be hoped that young researchers, who are not caught with extremely 
complicated simulations and iterative data fittings, will continue with using 
undeniable self-explaining mathematics for the indentation research. By doing 
so, they will reveal further physical effects that are responsible for the transition 
energy differences between Berkovich and cubecorner. Further pyramidal or 
conical indenters for anisotropic materials should be included. 
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ABSTRACT 

 
It is challenged that simulating indentations using ostensibly "equivalent" pseudo-
cones will take less computer time. Basic trigonometry and arithmetic rules out 
the mimicking of pseudo-cones with equal basal surface and depth with 
pyramidal indenters. The widely recognised angles of supposedly "identical" 
pseudo-cones cannot also assert that their depth is equal. The historical values 
of the often-employed half-opening angles of pseudo-cones are biassed, as 
evidenced by the answers provided for the problems to be answered. On that 
basis, it invalidates all simulations or findings. Not just for artificial intelligence, 
the large inaccuracies in the resulting hardness HISO and elastic modulus Er-ISO 
values are devastating. For equal basal surface and equal volume, the 
straightforward deduction for potentially ψ-cones (ψ for pseudo) without biassed 
depths' errors is presented. These ψ-cones would of course penetrate much 
more deeply than the three-sided Berkovich and cube corner pyramids (r < a/2), 

and their half-opening angles would be smaller than those of the respective 
pyramids (reverse with r > a/2 for four-sided Vickers). Additionally, the more 
sideways and their resulting downhill directions' opposite forces' direction angles 
are indicated. They are reflected by the parallelograms' diameters that are long 
and and their angles to the vertical axis. It is essential to have experimental 
loading curves before and after the phase-transition onsets. Quantitatively, 
imitation of pyramids and ψ-cones is likewise disallowed. For industrial and solid 
pharmaceutical materials, every simulation based on their assumptions would 
also be dangerously invalid.  
  

Keywords: Basic mathematics; extreme errors; false cone angles; indentation; 
unphysical cone models for pyramids; undue simulations. 

 

16.1 INTRODUCTION 
 

When treating pyramids as comparable cones, simulations are made easier by 
the ubiquitous indentations associated with equilateral three-sided pyramids. 
Iterative simulations using the so-called "equivalent" cone model formulas are 
simpler and take a lot less time on the computer when simulating the pyramids 
(e.g. [1,2,3] etc.). That equal basal surfaces would result in "equal penetration 
depths" is a dubious "assumption." To pick between pyramids and "equivalent 
cones," guided textbooks and indentation simulation reports use ISO 14577, [3]. 
But how is the so-called “equivalency” of pyramid models founded? The 
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mathematical formulas for the areas Atriangle = Acircle of equilateral triangle 
(3

0.5
/4)a

2
 and circle πr

2
 (Fig. 16.1) are rightfully equated. But we showed in [4] 

that no “equivalent” behavior results in such commonly believed conditions. For a 
variety of reasons, pseudo-cones and pyramids behaved differently. But we 
could not yet quantify the sizes of the differences. Now, we search for accurate 
inferences. 
 

The equal area radius r of the ψ-cone (ψ for pseudo) is transformed into the a-
unit from the pyramid with correct mathematics. This will remain the handle for 
the calculation of equal volumes and unequal heights. These heights are equal to 
the penetration depths in the absence of pile-up and hidden internal migrations 
along cleavage planes or channels [4]. The readers may be interested in certain 
updates in this topic that are available elsewhere [5-7]. When cleavage planes 
are present, the penetration depth is smaller than the calculated, but these 
authors still use ISO-14577 Standards treatment with iterations, or deal only with 
business concerns, or they iterate and simulate the height and even HISO and Er-

ISO [4]. The generally used angles of 70.2996˚ for Berkovich pseudo-cone, 42.28˚ 
for the cubecorner pseudo-cone, and 70.32˚ or 70.2996˚ for Vickers-pseudo cone 
in the literature are used for all time saving simulations. This has been 
challenged in [4] for various geometric reasons and will now be quantified. 
 

16.2 METHODS 
 

All calculations used a common scientific pocket calculator Rebell
®
 SC2030 with 

10 digits. All of them were used and results are reasonable rounded only when 
necessary. The worldwide unchangeable angles of diamond Berkovich and cube 
corner indenters were taken as fixed crystallographically approved quantities. Tip 
rounding is always removed in physically analyzed indentation curves as part of 
initial effects and did not interfere. Only undeniable trigonometry and 
mathematical formulas for the basal areas and volumes were used for the 
mathematical deductions without prejudice and without data-fitting. 
 

16.3 RESULTS 
 

The literature values of half opening angles of the pseudo-cones for Berkovich, 
cube corner, and Vickers indenters (of 70.2996˚, 42.28˚, and 70.32 or 70.2996˚ 
respectively) are incorrectly made to have the same basal areas, volumes, and 
heights as the pyramids. Historically, heights equivalence (“hpyramid = hcone”) might 
have been a “necessity”, because the indentation depths are used for ISO-
hardness and ISO-indentation modulus. We deduce here equal basal area and 
equal volume for ψ-cones but unequal depths. The used terms are indicated 
in Fig. 16.1(a) (taken from [4]) and in Fig. 16.1(b). The three-times flat and totally 
different all around circular force fields alone should have halted using pseudo 
cones! 
 

16.3.1 Error Discovery on the Deduction Ways of the Common 
“Equivalent” Pseudo-Cones 

 

The comparison of the so-called “equivalent cones” with the corresponding three-
sided normal pyramids requires straightforward basic algebra and trigonometry 

https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#f1
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref4
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#f1
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with always 10 significant figures, due to numerous irrational numbers with 
numerous equations. We test on the basis of the known formulas for equal-sided 
triangle, circle, pyramid and cone by equating the triangle Atriangle = a

2
3

0.5
/4 and 

circle areas Acircle = πr
2
. Such equality is the basis for pseudo-cones. One obtains 

from the 2/1 ratio at the central cut of the equal-sided triangle heights    
                        and r = 0.371257624a (Fig. 16.1). The pyramidal 
angle tanβ = 3

0.5
a/6hpyr and the pyramidal depth hpyr = 3

0.5
a/6tanβ, where β is the 

well-known half-angle of the diamond Berkovich (β = 65.27˚) or of cubecorner 
(β = 35.264˚). For the pseudo-cone we have  pseudo-cone                           

 

 
 

Fig. 16.1. Perspective images for (a) a three-sided pyramid and (b) a cone 
(not true to scale) 

 

One obtains  pseudo-cone
  pyr                               For Berkovich with β

B
 

 =  65.27˚  and  tanβ =  2.171160716  results hpseudo-cone/hpyr =  2.792413659/tanα. 

Here comes the historical error: Only by setting hpseudo-cone/hpyr to 1, which is the 
same as dividing Vcone over Vcone, was the divisor hpyr equal to the dividend hcone. 
Such  setting  is  absolutely  cheating:  It  is  putting  a  desired  answer  into  the 
question.  The  dividend  2.792413659 is  taken  as an unbelievably  biased  “tanα” 
from  the  cone  to  give  “αcone =  70.29688723˚”  (undistinguishable  from  the  less 
precisely  calculated  common  70.2996˚;  maybe  historical  equalization  with 
Vickers?) in the case of Berkovich. It was falsely created, spread, and believed. 
Unimaginably,  despite  the  correctly  calculated  equal  basal  circle-surface  area, 
where r is  smaller  than  0.5a and  also  smaller  than  half  of  the  basal  triangle 
height? It directly indicates, without any further calculation effort, that the pseudo- 
cone must be sharper but not blunter than the pyramid with β = 65.27˚. 

 
Surprisingly,  the  corresponding  bias  was  repeated  for  cubecorner-c with β-c = 
35.264˚  and hpseudocone-c/hpyr-c =  0.909378623/tanα where  the  divisor  was  falsely 
made to “tanα-c and thus α-c to 42.282713˚”. This bias is the commonly used false 

“value of 42.28˚”. 
 
The  four-sided  Vickers  indenter  is  more  often  used  in  industries.  The  biased 
published  angle  values  for  the  “equivalent”  pseudo-cone-V are  70.32˚  or 
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70.2996˚: As above, the corresponding unbelievable trick was used for precisely 
obtaining the second of these values. 
 
All these false pseudo-cone angles withstood for more than 30 years until the 
apparently first challenge started with [4]. Involved scientists, authors, reviewers, 
funding providers, textbook writers, academic teachers, and industrial users did 
not check and complain. But apparently, all of them liked a “same depth” for 
pyramids and their pseudo-cone heights at the same force. Any “equality” of 
these pseudo-cones and pyramids with the faulty biased angles is now strictly 
excluded. 
 
Our error discovery clearly reveals the disastrous historical “deductions”, more 

than about 30 years ago. Every hardness measurement (e.g.  ISO    contact
    

or Er-ISO) by simulations with iterating data-fitting that used this type of pseudo-
cones (notwithstanding the unphysical exponent on h that should be 3/2 instead 
[8,9]) is also obsolete for that reason. Unfortunately, these very frequent 
unphysical simulations create severe risks with the technical materials’ 
characterizations. An unbiased deduction of pseudo-cone geometries is thus 
very important for the quantification of the huge involved errors. It will become 
evident in Section 3.2. 
 

16.3.2 Deduction Test for Unbiased ψ-Cones with Correct Volumes 
and Heights 

 
We start with the equalized basal areas for the expression of radius r in units of 
the three-sided pyramidal side length a (Fig. 16.1). For the correct deduction of 
unbiased ψ-cones (now ψ for pseudo) with the equal volume (as required by the 
energy law) the unequal heights of the pyramids and ψ-cones ensue. The 
requirement of Atriangle-pyr = Acircle-cone gives Equation (16.1). 
 

 23  5      2 and  2   23  5     with    3   5                           (16.1) 

 
With Vpyr = Ahpyr/3 and Vcone = Ahcone/3 the respective heights are hpyr = 
3

0.5
a/6tanβ and hcone = r/tanα = 3

0.25
a/2π

0.5
tanα. The respective volumes are Vpyr 

= a
3
/24tanβpyr and Vψ-cone = a

3
3

0.125
/24π

0.5
tanαcone after substitutions and 

simplifications. For Berkovich (β-B = 65.27˚) we calculate Vpyr-B = 0.019190963a
3
 

at hpyr-B =.132958897a and for its ψ-cone Vψ-cone-B = 0.019190963a
3
 at hψ-cone-B = 

0.264191103a. For cubecorner (β-c = 35.264˚) we calculate Vpyr-c = 
0.058926415a

3
 at hpyr-c = 0.408254180a and for Vψ-cone-c = 0.058926415a

3
 at hψ-

cone-c = 0.811206506a. The height values calculate unequal for pyramid and its ψ-
cone. We use the energy law that requires equalizing the volumes at equal force 
to obtain Equation (16.2), and there from Equation (16.3). This allows for the 
calculation of tanαψ-cone. 
 

        pyr                     -cone                                            (16.2) 
 

     -cone            pyr                      pyr                         (16.3) 
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https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref5
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#ref6
https://www.scirp.org/journal/paperinformation.aspx?paperid=116541#f1


 
 
 

Basic Mathematics for Physically Correct Mechanical Properties from Indentations 
Study on Non-Equivalence of Pyramids and Their Pseudo-Cones 

 
 

 

260 
 

The angles αcone are thus 54.563917˚ for the Berkovich-ψ-cone (as compared 
with commonly 70.2996˚) and 24.591634 for the cubecorner-ψ-cone (as 
compared with commonly 42.28˚). 
For four-sided Vickers (β-v = 68˚) is r = a/π

0.5
 larger than a/2 for the ψ-cone-v. 

Thus, hpyr-v = 0.20201a is now larger than hψ-cone-v = 0.19741a and also the 
angle αcone-v = 70.71521˚ (here larger than β-v) for the Vickers-ψ-cone (as 
compared with commonly 70.32˚ or 70.2996˚). Mimicry is also here excluded. 
 
The different bracketed values from Section 16.3.1 compare the still stubbornly 
used common pseudo-cone angle values. These huge angle faults of the biased 
common values of Section 16.3.1 are enormous for the biased simulations of 
(nano)indentations. They make them completely worthless. 
 
Our results with so many decimals demonstrate the precision of the used 
arithmetic. They have to be rounded to the precision of the β-angles. We must 
stress that they represent the height of the indenters. The penetration depths are 
only equal to the heights in the absence of pile-up and internal migrations upon 
indentation. These cases require corrections for their depth decreases, as 
reported in [4]. The sideward influences had been exhaustively exemplified in 
[10]. 
 
We do not encourage using the non-biased ψ-cones for simulations. On the 
contrary: Pyramids and their ψ-cones are also not equivalent due to their 
different sloping angles. The unbiased Berkovich- and cubecorner-ψ-cones 
would penetrate about two times deeper (49.67%) than the pyramids. The now 
completed challenge of [4] was therein already evident but required this final 
quantifying deduction. When the unbiased ψ-cones would be used for 
simulations, their outputs would also be incorrect for the unequal directions. Such 
simulations with whatever mimicking cones must never be tried again; the 
existing ones must be deleted. Phase-transition onsets under load must be 
experimentally detected and for technical objects strictly avoided upon operation, 
because polymorph-interfaces promote disastrous cracking (e.g. at airliners) [4] 
[10,11]. Phase-transitions play also their important role in pharmaceutical solids 
(e. g. two polymorphs of crystallized cis-platinum [12]). 
 

16.3.3 The Depth Directions for the Forces in Pyramids as 
Compared with Their ψ-Cones 

 
It  is  our  duty  now  to  calculate  the  differences  between  the  pyramids  and  their 
unbiased ψ-cones without data-fitting. The calculated sideward force component 
angles vertical to the indenter slopes of the pyramid are 90˚ − 65.27˚ = 24.73˚ for 
Berkovich and 90˚ − 54.564˚ = 35.436˚ for its ψ-cone. In the case of cube corner 

we have correspondingly 90˚ − 35.264˚ = 54.736˚ and 90˚ − 24.5916˚ = 65.4084˚. 
These directional  angles  with respect to the central vertical axis  are now 15.73˚ 
and  18.03˚  respectively  steeper  than  in  [4]  where  the  biased  false  common 
pseudo-cone αcone-angles  had been used.  Fig. 16.2 exemplifies it  with the cube 

corner angles. It depicts the enlarged pyramidal cross-section of one from the flat 
triangular force-fields and for its ψ-cone the enlarged cross-section of the circular 
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force-field all around (cf Fig. 16.1). They are set close to each other for 
immediately observing the enormous differences, e.g. their depth differences. 
The geometric questions (including off-angle and length of the diameter in the 
parallelograms) are trigonometrically evident. 
 

 
 

Fig. 16.2. The depth directions diagram with the angles of the cube corner 
(left side) in relation to its vertical axis and of its ψ-cone (right side) in 

relation to its vertical axis 
 

The sidewise angles (lesser down) with respect to the horizontal axis are equal to 
the β-angles of the pyramids  and also the  α-angles of the ψ-cones (cf Fig. 16.1).  
They indicate the flatness  of the sidewise force component.  It is much flatter for    

cubecorner than for Berkovich and it had already been told in [4] that this qualifies 
the cubecorner for fracture toughness determinations. Here, the ψ-cone models  
with the unbiased α-angles would be flatter than the pyramids. But that excludes   

their mimicry power completely. Also the simulations with the new mimickry model 
could  again  not  take  care  of  the  slope-angle  influence  in  relation  to  materials’ 
cleavage  planes  or  channels.  There  is  no  pass  by  1)  at  the  use  of  pyramidal 
geometry and 2) at the prior experimental detection of the phase-transition onset 

with depth and force [8,9]. 
 
For  the  calculation  of  the  resulting  downward  direction  we  distinguish  the 
downward and sideward depths  with their long known  undeniable 80:20 ratio [9]  
to  obtain  the  directional  parallelogram  from  the  pyramidal  apex  at  both  sides 
of Fig.  16.2.  It  is  calculated  with  the  respective  sine, tangent,  and  cosine  
functions. The parallelograms are characterized by their smaller angle (90 − βpyr) 
for  the  pyramid  or  (90  − αψ-cone)  for  the ψ-cone.  Their  sides  are  the  respective 
fractions  of hpyr or hψ-cone:  0.2  times  for  sideward  and  0.8  times  for  downward 
direction.  For  the  calculation  of  the  resulting  diameter  length  and  off-angle  we 
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add the small top triangles to the bottom of the parallelogram. The so obtained 
right angle triangle gives the resulting downward depth direction and its off-angle 
with the vertical axis. Table 16.1 compares the pyramidal and ψ-conical angle 
and lengths to show how much they differ from each other. From there we can 
calculate the forces by using the experimental indentation of individual materials 
with FN = kh

3/2
 [8] in their calculated directions up to the (by simulations 

unavailable) phase-transition onset. From such onset force we start with a 
physically and chemically different polymorph. We can also calculate the different 
directions of the not mimicking ψ-cone for comparison to see how much the error 
of ψ-cones would further increase when using these. 
 
Table 16.1. Depth direction angles, heights and lengths for Berkovich and 

cube corner indentations and for the respective ψ-cone models 

 
Indenter with β-Angle 
or ψ-cone

a)
 

Sideward
b)

  
DeepAngle 

Sideward
c)
 Flat 

Angle 
Vertical 
off-Angle 

0.8 Indenter 
Height

d)
 

Diagonal 
Length 

Berkovich (65.27˚) 24.73˚ 65.27˚ 4.8894˚ 0.106367a 0.130997a 
Berkovich-ψ-Cone 35.436˚ 54.564˚ 6.9163˚ 0.211353a

a)
 0.256268a 

Cube corner (35.264˚ 54.754˚ 35.246˚ 10.2979˚ 0.326603a 0.379948a 
Cube corner-ψ-Cone 65.4083˚ 24.5917˚ 11.8992˚ 0.648965a

a)
 0.731194a 

a)
Instead of r the a-fractions from the pyramid is used for the equal basal area 

calculation; 
b)
in relation to the center axis; 

c)
in relation to the horizontal axis; 

d)
the height and 

length values represent the mathematical 8/2 ratio of the force distribution directions 
downward and sideward [9] in the absence of pile-up and hidden internal migration apart 

from the created half volume diameter [4] 

 
Table 16.1 shows the calculated slightly rounded depth directions and angles of 
the more sideward and the resulting downward directions. The forces at these 
directions are obtained by using the physically deduced [8] formula FN = kh

3/2
 

after determination of the physical hardness k (mN/µm
3/2

) (FN is the normal 
indentation force) from the slope of the indented material’s loading curve. All 
values in Table 16.1 are larger for the sharper ψ-cones that do not mimic. 
 
We must stress, that the resulting vertical force direction departs significantly 
from the vertical applied axis of the indentation. 
 
The commonly disregarded differences between the pyramids and their biased 
pseudo-cones (with equal heights) or unbiased ψ-cones (with enormous height 
differences) are very large. But both are in fact not mimicking the pyramids. 
 
Our quantification of the huge differences between pyramids and their ψ-cones 

makes obsolete any use for simulations of (nano)indentations. Their false 
claimed results are extremely dangerous for the use of technical including solid 
pharmaceutical materials [12], the mechanical properties of which must be very 
precisely known. 
 

16.4 CONCLUSIONS 
 

The purpose of this paper is to discourage any use of simulations by using faster 
calculated cones. Physically sound undeniable mathematic calculations are 
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reliable and much easier. The false common angles of the widely used pseudo-
cones are severely biased. Their use for simulations to save computer time is 
strongly falsifying. All such simulations are obsolete and dangerous. They cannot 
simulate phase-transition onsets and they violate the energy law by excluding the 
20% loss of normal force for not-penetrating events [9]. These simulations try to 
help themselves with a multitude of further iterative “work-hardening” simulations. 
Such published “results” cannot be repaired and must be fully extinguished. Also 
our tentatively deducted unbiased ψ-cones are not mimicking the pyramids. 

Three-sided pyramid-pseudo-cones are sharper and would go deeper than the 
pyramids with unlike force directions. Advanced simulations with the new 
unbiased ψ-cones are also impossible, because the force direction influences 
respond to specific materials properties. These must be experimentally 
determined (phase-transition onsets, cleavage planes’ or channels’ or holes’ 
orientations and widths) [10]. 
 
Computer time is only saved by physical analysis using basic mathematical 
calculations, avoiding simulations and data-fittings. That requires characterization 
with properly analyzed pyramidal (or with real cones) indentations. Only these 
reveal the previously ignored sharp phase-transition onsets and energies under 
load. One needs crystallographic investigations for the pile-up questions in case 
of materials’ anisotropy. Indentations are most important for the rapid 
optimization of materials’ properties with respect to their safety, when exposed to 
unavoidable forces. It is important to always stay below any materials’ phase-
transition onset force to avoid the cracking-risk. Simulations and data-fitting 
iterations produce dangerous risks with false HISO or false Er-ISO and therefrom 

derived mechanical properties of technical materials and by denying phase-
transitions. Beware of using simulated and fitted indentation data for artificial 
intelligence applications. They are on the Internet but they must be urgently 
disregarded and stopped. 
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