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Summary: A physical deduction of the FN = kh
3/2

 relation (where FN is normal force, k 

penetration resistance and h penetration depth) for conical/pyramidal indentation loading 

curves has been achieved on the basis of elementary mathematics. The indentation process 

couples the productions of volume and pressure to the displaced material that often partly 

plasticizes due to such pressure. As the pressure/plasticizing depends on the indenter volume, 

it follows that FN = Fp
1/3

 ·  Fi
2/3

, where the index p stands for pressure/plasticizing and i for 

indentation. Fp does not contribute to the penetration, only Fi. The exponent 2/3 on Fi shows 

that experimentally FN is applied but only FN
2/3 

is responsible for the penetration depth h. 

Thus, FN = kh
3/2

 is deduced and the physical reason is the loss of FN
1/3

 for the depth. 

Unfortunately, this has not been considered in teaching, textbooks, and the previous deduction 

of numerous common mechanical parameters, when the Love/Sneddon deductions of an 

exponent 2 on h were accepted and applied. The various unexpected experimental 

verifications and applications of the correct exponent 3/2 are mentioned and cited.  Undue 

mechanical parameters require correction for safety reasons. 
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Introduction 

 

 In 1939 Love and in 1965 Sneddon mathematically solved the “Boussinesq’s 

problem” with different results, but both with the prediction of normal load (FN) being 

proportional to depth square for conical and thus also pyramidal indentations. This has been 

widely accepted in publications and leading textbooks, and used for the deduction of various 

mechanical parameters that are still in use. Exponent 2 is also the result of numerous finite 

element simulations, when these use quadratic displacement elements (for example Wang et 

al. 2008; cf. Soare et al. 2005). Such simulations are often claimed to concur with published 

loading curves. However, more precise analysis reveals since 2004 that the experimental 

exponent is 3/2 instead. Simulated and experimental curves do not even correspond when 

published in the same paper. Only the analysis using the correct exponent can show, how to 

distinguish initial surface effects and phase changes under the load if these occur (Kaupp and 

Naimi-Jamal, 2004; Naimi-Jamal and Kaupp, 2005). The linear correlation coefficient for the 

slope k (FN versus h
3/2

) continues to always prove r >0.999 or for less noisy measurements r 

>0.9999 (Kaupp and Naimi-Jamal, 2010, and the cited more recent publications up to 2014). 

It was therefore possible to introduce the concept of penetration resistance for the safe 

comparison of materials’ properties and compatibilities (Kaupp and Naimi-Jamal 2013), the 

energetic of indentations with the important finding that 80% of FN is used for the indentation 

work and 20% for all the other force-induced energetic events (Kaupp 2013). Temperature 

dependent indentations even allow for the calculation of the activation energy of phase 
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changes from nothing else than from indentation loading curves (Kaupp 2014). What’s still 

missing was the physical reason for the experimentally verified successful exponent 3/2 on h, 

and this has been rightfully asked for by new-comers and experts in the field. Thus, the 

appreciation of the new exponent against textbooks (except Kaupp, 2006) requires the 

deduction of the exponent 3/2 on h. We report now on an unexpectedly short deduction of the 

physical reason that was not thought upon till now. 

 

Experimental Background 

 

 The instrumental indentation experiment uses in most cases a diamond indenter that is 

continuously pressed with normal force (FN) onto a level surface until the continuously 

recorded depth h is reached. By doing so, the volume V of the indenter is intruded and it shifts 

original material towards the bulk while producing pressure to it. Depending on the materials’ 

properties such pressure p may persist (fully elastic) or it is partly released by some sort of 

plasticizing and migration with all of the known long-range effects. This scheme is principally 

equivalent with all of the different loading types normal to level surfaces and has been 

experimentally verified for all mechanisms of plasticizing (Kaupp and Naimi-Jamal 2013). 

Such retained pressure is, of course, used in unloading curves for the calculation of the elastic 

modulus, which does however not apply to the present topic. With this in mind we can start 

the deduction of the exponent 3/2.  

 

Results and Discussion 

 

 The indentation couples two processes that must be differentiated, because the applied 

force must serve both of them. The production of volume is thus attributed to the fraction Fi
m

 

for indentation, and the production of pressure + loss of pressure (by plasticizing via pressure) 

to the displaced material is attributed to the fraction Fp
n
 for pressure. As the multiplication of 

both factors must give the product FN, these fractional forces must have exponents m and n 

<1, so that we obtain Equation (1). 

 
                                                       FN = Fi 

m
 ·  Fp

n
                                           (1) 

 

 For the determination of the exponents m and n we use the maximal pressure that 

could be reached at the depth h for absence of plasticizing. It is p + loss of p and we call it 

pmax. Equation (2) is evident, and the mathematical expression for a cone is Vcone.  

 

                                 pmax = K V;   Vcone =  π (tanα)
2 

h
3
/3                              (2) 

 

 Equation (2) reveals that pmax and thus also Fp are proportional to h
3
 of the cone. 

Formula (3) is thus obtained for cones and pyramids (with effective “effective cone angles” α.  

 

                                 pmax ∝ h
3
 and thus also Fp ∝ h

3 
                                     (3) 

 

 Formula (3) reveals the FP
1/3

 proportionality to the depth h, but Fp
1/3

 does not 

contribute to the depth. Nevertheless, when n = 1/3, m must be 2/3 according to Equation (1), 

and this gives Equation (4).  

                                               FN = Fi 
2/3

 ·  Fp
1/3                                                                       

(4) 

 

 The exponent 2/3 on Fi in Equation (4) reveals that instrumental indentation applies 

FN, but only the fraction FN
2/3

 is responsible for the penetration and its depth h. This is 

expressed with Equation (5) that is thus physically deduced.  
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                                              FN = k h
3/2

                                                          (5) 

  

The unavoidable pressure/plasticizing factor Fp
1/3

 is lost for the depth. This is the physical 

reason for the exponent 3/2 on h instead of recently assumed 2 for cones and pyramids.  

 

Conclusions 

  
 The physical deduction of the exponent 3/2 on h with elementary mathematics for 

indentation loading curves of cones and pyramids reveals a clear-cut physical reason. It will 

certainly strengthen the appreciation of exactly quantitative instrumental nano-, micro-, and 

macro-indentations. When required, the respective penetration resistance constant k (N/m
3/2

) 

can be easily parameterized (see Equation 2). An example would be when a penetration 

resistance k shall be compared with different indenter geometries. But when the exponent on h 

of loading curves is used for hardness H, modulus E, or further parameter calculations, the 

correct exponent 3/2 should be used (but not 2 as for example at Oliver, 2001, and many 

others). Also the numerous recent plasticity parameters for biological materials in a tutorial of 

Oyen and Cook (2009) were deduced with the erroneous exponent 2 on h, and are thus subject 

to correcting re-deduction. Only the correct exponent allows for more advanced important 

applications that revealed unexpected materials’ qualities. Some of these are named in the 

Introduction, others can be found in the cited papers of the author. Reliable mechanical 

qualities on the sound physical basis are most important for the proper adjustment of technical 

and medicinal composites and joints, for safety reasons. This is particularly important in the 

pressure range for phase changes, the onset of which can only be detected in the loading 

curves by analysis with the correct exponent 3/2 on h. It is hoped that all of that will now be 

better acknowledged in teaching and textbooks as well.      
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