Erratum to "Valid Geometric Solutions for Indentations with Algebraic Calculations", [Advances in Pure Mathematics, Vol. 10 (2020) 322-336]

Gerd Kaupp
University of Oldenburg, Oldenburg, Germany
Email: gerd.kaupp@uni-oldenburg.de

How to cite this paper: Kaupp, G. (2020) Erratum to "Valid Geometric Solutions for Indentations with Algebraic Calculations", [Advances in Pure Mathematics, Vol. 10 (2020) 322-336]. Advances in Pure Mathematics, 10, 545-546.
https://doi.org/10.4236/apm.2020.109034

Received: August 24, 2020
Accepted: September 26, 2020
Published: September 29, 2020

Copyright © 2020 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The original online version of this article (Gerd Kaupp 2020) Valid Geometric Solutions for Indentations with Algebraic Calculations, (Volume, 10, 322-336, https://doi.org/10.4236/apm.2020.105019) needs some further amendments and clarification.

The Deduction Details for the Spherical Indentations Equation

The incorrect proportionalities (16) and (17) in the published main-text are useless and we apologize for their being printed. They were not part of the deduction of the Equation $\left(18_{v}\right)$. The deduction of $\left(18_{v}\right)$ follows the one for the pyramidal or conical indentations (4) through (8). The only difference is a dimensionless correction factor $\pi(R / h-1 / 3)$ that must be applied to every data pair due to the calotte volume. The detailed deduction of $\left(18_{v}\right)=(6 \mathrm{~S})$, is therefore supplemented here.

Upon normal force (F_{N}) application the spherical indentation couples the volume formation (V) with pressure formation to the surrounding material + pressure loss by plasticizing ($p_{\text {total }}$). One writes therefore Equation (1S) (with $m+$ $n=1$)

$$
\begin{equation*}
F_{\mathrm{N}}=F_{\mathrm{Nv}}^{m} F_{\mathrm{Nptotal}}^{n} \tag{1S}
\end{equation*}
$$

There can be no doubt that the total pressure depends on the inserted calotte volume that is $V=h^{2} \pi(R-h / 3)$. It is multiplied on the right-hand side with $1=$ h / h to obtain (2S). We thus obtain (3S) and (4S) with $n=1 / 3$.

$$
\begin{equation*}
V=h^{3} \pi(R / h-1 / 3) \tag{2S}
\end{equation*}
$$

$$
\begin{gather*}
F_{\text {Nptotal }} \propto h^{3} \tag{3S}\\
F_{\text {Nptotal }}^{1 / 3} \propto h_{p \text { total }} \tag{4S}
\end{gather*}
$$

(4S) with pseudo depth " $h_{p \text { total }}$ " is lost for the volume formation. It remains (5S) with $m=2 / 3$ on $F_{\mathrm{N} v}$ or the exponent $3 / 2$ on h_{v}.

$$
\begin{equation*}
F_{\mathrm{Nv}}^{2 / 3} \propto h_{v} \text { or } F_{\mathrm{N} v} \propto h_{v}^{3 / 2} \tag{5S}
\end{equation*}
$$

The proportionality (5S) must now result in an equation by multiplication with the dimensionless correction factor $\pi(R / h-1 / 3)$ and with a materials' factor $k_{V}\left(\mathrm{mN} / \mu \mathrm{m}^{3 / 2}\right)$ to obtain Equation (6S) that is Equation (18) in the main paper.

$$
\begin{equation*}
F_{\mathrm{N} v}=k_{v} h^{3 / 2} \pi(R / h-1 / 3) \tag{6S}
\end{equation*}
$$

For plotting of (6S) for obtaining k_{v} the $\pi(R / h-1 / 3)$ factor is separately multiplied with $h^{3 / 2}$ for every data pair.

An additive term F_{a} can be necessary for the axis cut correction if not zero due to initial surface effects of the material.

